File size: 7,082 Bytes
3c46205
b6d315e
 
 
 
 
 
f0b9f69
b6d315e
 
 
 
4bf4f50
00da662
b6d315e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b8fe16
 
 
 
 
 
b6d315e
 
 
0b8fe16
 
b6d315e
0b8fe16
b6d315e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c661b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
938106e
 
b6d315e
 
 
 
 
 
 
00da662
b6d315e
0b8fe16
 
 
 
 
 
 
b6d315e
0b8fe16
 
 
 
 
 
 
 
b6d315e
0b8fe16
 
 
 
 
 
 
 
b6d315e
0b8fe16
 
 
 
 
 
 
 
b6d315e
0b8fe16
 
 
 
 
 
 
 
 
b6d315e
0b8fe16
 
 
 
 
 
 
 
b6d315e
 
0b8fe16
 
 
 
 
 
 
 
b6d315e
0b8fe16
 
 
 
 
 
 
4bf4f50
00da662
6c661b3
 
 
 
00da662
 
 
 
 
 
103a3c6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# required libraries
import gradio as gr
from transformers import AutoProcessor, Idefics3ForConditionalGeneration
import re
import time
from PIL import Image
import torch
import spaces
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

processor = AutoProcessor.from_pretrained("HuggingFaceM4/Idefics3-8B-Llama3")

model = Idefics3ForConditionalGeneration.from_pretrained("HuggingFaceM4/Idefics3-8B-Llama3",
        torch_dtype=torch.bfloat16,
        trust_remote_code=True).to("cuda")

BAD_WORDS_IDS = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
EOS_WORDS_IDS = [processor.tokenizer.eos_token_id]

@spaces.GPU
def model_inference(
    images, text, assistant_prefix, decoding_strategy, temperature, max_new_tokens,
    repetition_penalty, top_p
):
    if text == "" and not images:
        gr.Error("Please input a query and optionally image(s).")

    if text == "" and images:
        gr.Error("Please input a text query along the image(s).")

    if isinstance(images, Image.Image):
        images = [images]

    resulting_messages = [
                {
                    "role": "user",
                    "content": [{"type": "image"}] + [
                        {"type": "text", "text": text}
                    ]
                }
            ]

    if assistant_prefix:
      text = f"{assistant_prefix} {text}"

    prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
    inputs = processor(text=prompt, images=[images], return_tensors="pt")
    inputs = {k: v.to("cuda") for k, v in inputs.items()}

    generation_args = {
        "max_new_tokens": max_new_tokens,
        "repetition_penalty": repetition_penalty,
    }

    assert decoding_strategy in [
        "Greedy",
        "Top P Sampling",
    ]
    if decoding_strategy == "Greedy":
        generation_args["do_sample"] = False
    elif decoding_strategy == "Top P Sampling":
        generation_args["temperature"] = temperature
        generation_args["do_sample"] = True
        generation_args["top_p"] = top_p

    generation_args.update(inputs)

    # Generate
    generated_ids = model.generate(**generation_args)

    generated_texts = processor.batch_decode(generated_ids[:, generation_args["input_ids"].size(1):], skip_special_tokens=True)
    return generated_texts[0]

css = """
#app-container {
    background-color: #f8f9fa;
    padding: 20px;
    border-radius: 10px;
    box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}

#app-header {
    text-align: center;
    margin-bottom: 20px;
}

#app-description {
    text-align: center;
    margin-bottom: 20px;
}

#app-footer {
    text-align: center;
    margin-top: 20px;
    font-size: 0.9em;
}

#app-footer a {
    color: #007bff;
    text-decoration: none;
}

#app-footer a:hover {
    text-decoration: underline;
}
"""

with gr.Blocks(css=css, theme='JohnSmith9982/small_and_pretty') as demo:
    gr.HTML("<h1 id='app-header'>Marketing Vision App πŸ“ˆ</h1>")
    gr.HTML("<p id='app-description'>This app uses the <a href='https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3' target='_blank'>HuggingFaceM4/Idefics3-8B-Llama3</a> model to answer questions related to various topics. Upload an image and a text query.</p>")
    gr.Markdown("**Disclaimer:** This app may not consistently follow prompts or handle complex tasks. However, adding a prefix to the assistant's response can significantly improve the output. You could also play with the parameters such as the temperature in non-greedy mode.")
    with gr.Column():
        image_input = gr.Image(label="Upload your Image", type="pil", scale=1)
        query_input = gr.Textbox(label="Prompt")
        assistant_prefix = gr.Textbox(label="Assistant Prefix", placeholder="Let's think step by step.")

        submit_btn = gr.Button("Submit")
        output = gr.Textbox(label="Output")

    with gr.Accordion(label="Advanced Generation Parameters"):
        max_new_tokens = gr.Slider(
              minimum=8,
              maximum=1024,
              value=512,
              step=1,
              interactive=True,
              label="Maximum number of new tokens to generate",
          )
        repetition_penalty = gr.Slider(
              minimum=0.01,
              maximum=5.0,
              value=1.2,
              step=0.01,
              interactive=True,
              label="Repetition penalty",
              info="1.0 is equivalent to no penalty",
          )
        temperature = gr.Slider(
              minimum=0.0,
              maximum=5.0,
              value=0.4,
              step=0.1,
              interactive=True,
              label="Sampling temperature",
              info="Higher values will produce more diverse outputs.",
          )
        top_p = gr.Slider(
              minimum=0.01,
              maximum=0.99,
              value=0.8,
              step=0.01,
              interactive=True,
              label="Top P",
              info="Higher values is equivalent to sampling more low-probability tokens.",
          )
        decoding_strategy = gr.Radio(
              [
                  "Greedy",
                  "Top P Sampling",
              ],
              value="Greedy",
              label="Decoding strategy",
              interactive=True,
              info="Higher values is equivalent to sampling more low-probability tokens.",
          )
        decoding_strategy.change(
              fn=lambda selection: gr.Slider(
                  visible=(
                      selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
                  )
              ),
              inputs=decoding_strategy,
              outputs=temperature,
          )

        decoding_strategy.change(
              fn=lambda selection: gr.Slider(
                  visible=(
                      selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
                  )
              ),
              inputs=decoding_strategy,
              outputs=repetition_penalty,
          )
        decoding_strategy.change(
              fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])),
              inputs=decoding_strategy,
              outputs=top_p,
          )

        submit_btn.click(model_inference, inputs = [image_input, query_input, assistant_prefix, decoding_strategy, temperature,
                                                      max_new_tokens, repetition_penalty, top_p], outputs=output)

    footer = """
    <div id='app-footer'>
        <a href='https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/' target='_blank'>LinkedIn</a> |
        <a href='https://github.com/arad1367' target='_blank'>GitHub</a> |
        <a href='https://arad1367.pythonanywhere.com/' target='_blank'>Live demo of my PhD defense</a>
        <br>
        Made with πŸ’– by Pejman Ebrahimi
    </div>
    """
    gr.HTML(footer)

demo.launch(debug=True)