Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,161 +1,161 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import whisper
|
3 |
-
import os
|
4 |
-
import shutil
|
5 |
-
import cv2
|
6 |
-
from moviepy
|
7 |
-
from tqdm import tqdm
|
8 |
-
|
9 |
-
FONT = cv2.FONT_HERSHEY_SIMPLEX
|
10 |
-
FONT_SCALE = 0.8
|
11 |
-
FONT_THICKNESS = 2
|
12 |
-
|
13 |
-
class VideoTranscriber:
|
14 |
-
def __init__(self, model_path, video_path):
|
15 |
-
self.model = whisper.load_model(model_path)
|
16 |
-
self.video_path = video_path
|
17 |
-
self.audio_path = ''
|
18 |
-
self.text_array = []
|
19 |
-
self.fps = 0
|
20 |
-
self.char_width = 0
|
21 |
-
|
22 |
-
def transcribe_video(self):
|
23 |
-
print('Transcribing video')
|
24 |
-
result = self.model.transcribe(self.audio_path)
|
25 |
-
text = result["segments"][0]["text"]
|
26 |
-
textsize = cv2.getTextSize(text, FONT, FONT_SCALE, FONT_THICKNESS)[0]
|
27 |
-
cap = cv2.VideoCapture(self.video_path)
|
28 |
-
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
29 |
-
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
30 |
-
asp = 16/9
|
31 |
-
ret, frame = cap.read()
|
32 |
-
width = frame[:, int(int(width - 1 / asp * height) / 2):width - int((width - 1 / asp * height) / 2)].shape[1]
|
33 |
-
width = width - (width * 0.1)
|
34 |
-
self.fps = cap.get(cv2.CAP_PROP_FPS)
|
35 |
-
self.char_width = int(textsize[0] / len(text))
|
36 |
-
|
37 |
-
for j in tqdm(result["segments"]):
|
38 |
-
lines = []
|
39 |
-
text = j["text"]
|
40 |
-
end = j["end"]
|
41 |
-
start = j["start"]
|
42 |
-
total_frames = int((end - start) * self.fps)
|
43 |
-
start = start * self.fps
|
44 |
-
total_chars = len(text)
|
45 |
-
words = text.split(" ")
|
46 |
-
i = 0
|
47 |
-
|
48 |
-
while i < len(words):
|
49 |
-
words[i] = words[i].strip()
|
50 |
-
if words[i] == "":
|
51 |
-
i += 1
|
52 |
-
continue
|
53 |
-
length_in_pixels = (len(words[i]) + 1) * self.char_width
|
54 |
-
remaining_pixels = width - length_in_pixels
|
55 |
-
line = words[i]
|
56 |
-
|
57 |
-
while remaining_pixels > 0:
|
58 |
-
i += 1
|
59 |
-
if i >= len(words):
|
60 |
-
break
|
61 |
-
length_in_pixels = (len(words[i]) + 1) * self.char_width
|
62 |
-
remaining_pixels -= length_in_pixels
|
63 |
-
if remaining_pixels < 0:
|
64 |
-
continue
|
65 |
-
else:
|
66 |
-
line += " " + words[i]
|
67 |
-
|
68 |
-
line_array = [line, int(start) + 15, int(len(line) / total_chars * total_frames) + int(start) + 15]
|
69 |
-
start = int(len(line) / total_chars * total_frames) + int(start)
|
70 |
-
lines.append(line_array)
|
71 |
-
self.text_array.append(line_array)
|
72 |
-
|
73 |
-
cap.release()
|
74 |
-
print('Transcription complete')
|
75 |
-
|
76 |
-
def extract_audio(self):
|
77 |
-
print('Extracting audio')
|
78 |
-
audio_path = os.path.join(os.path.dirname(self.video_path), "audio.mp3")
|
79 |
-
video = VideoFileClip(self.video_path)
|
80 |
-
audio = video.audio
|
81 |
-
audio.write_audiofile(audio_path)
|
82 |
-
self.audio_path = audio_path
|
83 |
-
print('Audio extracted')
|
84 |
-
|
85 |
-
def extract_frames(self, output_folder):
|
86 |
-
print('Extracting frames')
|
87 |
-
cap = cv2.VideoCapture(self.video_path)
|
88 |
-
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
89 |
-
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
90 |
-
asp = width / height
|
91 |
-
N_frames = 0
|
92 |
-
|
93 |
-
while True:
|
94 |
-
ret, frame = cap.read()
|
95 |
-
if not ret:
|
96 |
-
break
|
97 |
-
|
98 |
-
frame = frame[:, int(int(width - 1 / asp * height) / 2):width - int((width - 1 / asp * height) / 2)]
|
99 |
-
|
100 |
-
for i in self.text_array:
|
101 |
-
if N_frames >= i[1] and N_frames <= i[2]:
|
102 |
-
text = i[0]
|
103 |
-
text_size, _ = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2)
|
104 |
-
text_x = int((frame.shape[1] - text_size[0]) / 2)
|
105 |
-
text_y = int(height/2)
|
106 |
-
cv2.putText(frame, text, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2)
|
107 |
-
break
|
108 |
-
|
109 |
-
cv2.imwrite(os.path.join(output_folder, str(N_frames) + ".jpg"), frame)
|
110 |
-
N_frames += 1
|
111 |
-
|
112 |
-
cap.release()
|
113 |
-
print('Frames extracted')
|
114 |
-
|
115 |
-
def create_video(self, output_video_path):
|
116 |
-
print('Creating video')
|
117 |
-
image_folder = os.path.join(os.path.dirname(self.video_path), "frames")
|
118 |
-
if not os.path.exists(image_folder):
|
119 |
-
os.makedirs(image_folder)
|
120 |
-
|
121 |
-
self.extract_frames(image_folder)
|
122 |
-
|
123 |
-
images = [img for img in os.listdir(image_folder) if img.endswith(".jpg")]
|
124 |
-
images.sort(key=lambda x: int(x.split(".")[0]))
|
125 |
-
|
126 |
-
frame = cv2.imread(os.path.join(image_folder, images[0]))
|
127 |
-
height, width, layers = frame.shape
|
128 |
-
|
129 |
-
clip = ImageSequenceClip([os.path.join(image_folder, image) for image in images], fps=self.fps)
|
130 |
-
audio = AudioFileClip(self.audio_path)
|
131 |
-
clip = clip.set_audio(audio)
|
132 |
-
clip.write_videofile(output_video_path)
|
133 |
-
shutil.rmtree(image_folder)
|
134 |
-
os.remove(os.path.join(os.path.dirname(self.video_path), "audio.mp3"))
|
135 |
-
|
136 |
-
def process_video(video_path):
|
137 |
-
model_path = "base"
|
138 |
-
output_video_path = "output.mp4"
|
139 |
-
|
140 |
-
transcriber = VideoTranscriber(model_path, video_path)
|
141 |
-
transcriber.extract_audio()
|
142 |
-
transcriber.transcribe_video()
|
143 |
-
transcriber.create_video(output_video_path)
|
144 |
-
|
145 |
-
return output_video_path
|
146 |
-
|
147 |
-
# Gradio Interface
|
148 |
-
def gradio_interface(video):
|
149 |
-
output_video_path = process_video(video)
|
150 |
-
return output_video_path
|
151 |
-
|
152 |
-
iface = gr.Interface(
|
153 |
-
fn=gradio_interface,
|
154 |
-
inputs=gr.inputs.Video(label="Upload Video"),
|
155 |
-
outputs=gr.outputs.Video(label="Transcribed Video"),
|
156 |
-
title="Video Transcription App",
|
157 |
-
description="Upload a video to transcribe and generate a new video with subtitles."
|
158 |
-
)
|
159 |
-
|
160 |
-
if __name__ == "__main__":
|
161 |
iface.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import whisper
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
import cv2
|
6 |
+
from moviepy import ImageSequenceClip, AudioFileClip, VideoFileClip
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
FONT = cv2.FONT_HERSHEY_SIMPLEX
|
10 |
+
FONT_SCALE = 0.8
|
11 |
+
FONT_THICKNESS = 2
|
12 |
+
|
13 |
+
class VideoTranscriber:
|
14 |
+
def __init__(self, model_path, video_path):
|
15 |
+
self.model = whisper.load_model(model_path)
|
16 |
+
self.video_path = video_path
|
17 |
+
self.audio_path = ''
|
18 |
+
self.text_array = []
|
19 |
+
self.fps = 0
|
20 |
+
self.char_width = 0
|
21 |
+
|
22 |
+
def transcribe_video(self):
|
23 |
+
print('Transcribing video')
|
24 |
+
result = self.model.transcribe(self.audio_path)
|
25 |
+
text = result["segments"][0]["text"]
|
26 |
+
textsize = cv2.getTextSize(text, FONT, FONT_SCALE, FONT_THICKNESS)[0]
|
27 |
+
cap = cv2.VideoCapture(self.video_path)
|
28 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
29 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
30 |
+
asp = 16/9
|
31 |
+
ret, frame = cap.read()
|
32 |
+
width = frame[:, int(int(width - 1 / asp * height) / 2):width - int((width - 1 / asp * height) / 2)].shape[1]
|
33 |
+
width = width - (width * 0.1)
|
34 |
+
self.fps = cap.get(cv2.CAP_PROP_FPS)
|
35 |
+
self.char_width = int(textsize[0] / len(text))
|
36 |
+
|
37 |
+
for j in tqdm(result["segments"]):
|
38 |
+
lines = []
|
39 |
+
text = j["text"]
|
40 |
+
end = j["end"]
|
41 |
+
start = j["start"]
|
42 |
+
total_frames = int((end - start) * self.fps)
|
43 |
+
start = start * self.fps
|
44 |
+
total_chars = len(text)
|
45 |
+
words = text.split(" ")
|
46 |
+
i = 0
|
47 |
+
|
48 |
+
while i < len(words):
|
49 |
+
words[i] = words[i].strip()
|
50 |
+
if words[i] == "":
|
51 |
+
i += 1
|
52 |
+
continue
|
53 |
+
length_in_pixels = (len(words[i]) + 1) * self.char_width
|
54 |
+
remaining_pixels = width - length_in_pixels
|
55 |
+
line = words[i]
|
56 |
+
|
57 |
+
while remaining_pixels > 0:
|
58 |
+
i += 1
|
59 |
+
if i >= len(words):
|
60 |
+
break
|
61 |
+
length_in_pixels = (len(words[i]) + 1) * self.char_width
|
62 |
+
remaining_pixels -= length_in_pixels
|
63 |
+
if remaining_pixels < 0:
|
64 |
+
continue
|
65 |
+
else:
|
66 |
+
line += " " + words[i]
|
67 |
+
|
68 |
+
line_array = [line, int(start) + 15, int(len(line) / total_chars * total_frames) + int(start) + 15]
|
69 |
+
start = int(len(line) / total_chars * total_frames) + int(start)
|
70 |
+
lines.append(line_array)
|
71 |
+
self.text_array.append(line_array)
|
72 |
+
|
73 |
+
cap.release()
|
74 |
+
print('Transcription complete')
|
75 |
+
|
76 |
+
def extract_audio(self):
|
77 |
+
print('Extracting audio')
|
78 |
+
audio_path = os.path.join(os.path.dirname(self.video_path), "audio.mp3")
|
79 |
+
video = VideoFileClip(self.video_path)
|
80 |
+
audio = video.audio
|
81 |
+
audio.write_audiofile(audio_path)
|
82 |
+
self.audio_path = audio_path
|
83 |
+
print('Audio extracted')
|
84 |
+
|
85 |
+
def extract_frames(self, output_folder):
|
86 |
+
print('Extracting frames')
|
87 |
+
cap = cv2.VideoCapture(self.video_path)
|
88 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
89 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
90 |
+
asp = width / height
|
91 |
+
N_frames = 0
|
92 |
+
|
93 |
+
while True:
|
94 |
+
ret, frame = cap.read()
|
95 |
+
if not ret:
|
96 |
+
break
|
97 |
+
|
98 |
+
frame = frame[:, int(int(width - 1 / asp * height) / 2):width - int((width - 1 / asp * height) / 2)]
|
99 |
+
|
100 |
+
for i in self.text_array:
|
101 |
+
if N_frames >= i[1] and N_frames <= i[2]:
|
102 |
+
text = i[0]
|
103 |
+
text_size, _ = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2)
|
104 |
+
text_x = int((frame.shape[1] - text_size[0]) / 2)
|
105 |
+
text_y = int(height/2)
|
106 |
+
cv2.putText(frame, text, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2)
|
107 |
+
break
|
108 |
+
|
109 |
+
cv2.imwrite(os.path.join(output_folder, str(N_frames) + ".jpg"), frame)
|
110 |
+
N_frames += 1
|
111 |
+
|
112 |
+
cap.release()
|
113 |
+
print('Frames extracted')
|
114 |
+
|
115 |
+
def create_video(self, output_video_path):
|
116 |
+
print('Creating video')
|
117 |
+
image_folder = os.path.join(os.path.dirname(self.video_path), "frames")
|
118 |
+
if not os.path.exists(image_folder):
|
119 |
+
os.makedirs(image_folder)
|
120 |
+
|
121 |
+
self.extract_frames(image_folder)
|
122 |
+
|
123 |
+
images = [img for img in os.listdir(image_folder) if img.endswith(".jpg")]
|
124 |
+
images.sort(key=lambda x: int(x.split(".")[0]))
|
125 |
+
|
126 |
+
frame = cv2.imread(os.path.join(image_folder, images[0]))
|
127 |
+
height, width, layers = frame.shape
|
128 |
+
|
129 |
+
clip = ImageSequenceClip([os.path.join(image_folder, image) for image in images], fps=self.fps)
|
130 |
+
audio = AudioFileClip(self.audio_path)
|
131 |
+
clip = clip.set_audio(audio)
|
132 |
+
clip.write_videofile(output_video_path)
|
133 |
+
shutil.rmtree(image_folder)
|
134 |
+
os.remove(os.path.join(os.path.dirname(self.video_path), "audio.mp3"))
|
135 |
+
|
136 |
+
def process_video(video_path):
|
137 |
+
model_path = "base"
|
138 |
+
output_video_path = "output.mp4"
|
139 |
+
|
140 |
+
transcriber = VideoTranscriber(model_path, video_path)
|
141 |
+
transcriber.extract_audio()
|
142 |
+
transcriber.transcribe_video()
|
143 |
+
transcriber.create_video(output_video_path)
|
144 |
+
|
145 |
+
return output_video_path
|
146 |
+
|
147 |
+
# Gradio Interface
|
148 |
+
def gradio_interface(video):
|
149 |
+
output_video_path = process_video(video)
|
150 |
+
return output_video_path
|
151 |
+
|
152 |
+
iface = gr.Interface(
|
153 |
+
fn=gradio_interface,
|
154 |
+
inputs=gr.inputs.Video(label="Upload Video"),
|
155 |
+
outputs=gr.outputs.Video(label="Transcribed Video"),
|
156 |
+
title="Video Transcription App",
|
157 |
+
description="Upload a video to transcribe and generate a new video with subtitles."
|
158 |
+
)
|
159 |
+
|
160 |
+
if __name__ == "__main__":
|
161 |
iface.launch()
|