Update app.py
Browse files
app.py
CHANGED
@@ -1,562 +1,115 @@
|
|
1 |
-
|
2 |
-
import json
|
3 |
-
import sys
|
4 |
import os
|
5 |
-
import io
|
6 |
-
import argparse
|
7 |
-
import os
|
8 |
-
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib"
|
9 |
-
|
10 |
-
import uuid
|
11 |
-
import base64
|
12 |
-
import logging
|
13 |
import time
|
14 |
-
import
|
15 |
import cv2
|
16 |
import insightface
|
|
|
|
|
|
|
|
|
17 |
import numpy as np
|
18 |
-
from typing import List, Union
|
19 |
from PIL import Image
|
20 |
-
from restoration import *
|
21 |
-
from flask import Flask, request, jsonify, make_response
|
22 |
-
from waitress import serve
|
23 |
-
|
24 |
-
LOG_LEVEL = logging.DEBUG
|
25 |
-
TMP_PATH = '/tmp/inswapper'
|
26 |
-
script_dir = os.path.dirname(os.path.abspath(__file__))
|
27 |
-
log_path = ''
|
28 |
-
|
29 |
-
# Mac does not have permission to /var/log for example
|
30 |
-
if sys.platform == 'linux':
|
31 |
-
log_path = '/var/log/'
|
32 |
-
|
33 |
-
logging.basicConfig(
|
34 |
-
filename=f'{log_path}inswapper.log',
|
35 |
-
format='%(asctime)s : %(levelname)s : %(message)s',
|
36 |
-
level=LOG_LEVEL
|
37 |
-
)
|
38 |
-
|
39 |
-
logging.getLogger().addHandler(logging.StreamHandler(sys.stdout))
|
40 |
-
|
41 |
-
|
42 |
-
def process_request(request_obj):
|
43 |
-
try:
|
44 |
-
logging.debug('Swapping face')
|
45 |
-
face_swap_timer = Timer()
|
46 |
-
result_image = face_swap(request_obj['source_image'], request_obj['target_image'])
|
47 |
-
face_swap_time = face_swap_timer.get_elapsed_time()
|
48 |
-
logging.info(f'Time taken to swap face: {face_swap_time} seconds')
|
49 |
-
|
50 |
-
response = {
|
51 |
-
'status': 'ok',
|
52 |
-
'image': result_image
|
53 |
-
}
|
54 |
-
except Exception as e:
|
55 |
-
logging.error(e)
|
56 |
-
response = {
|
57 |
-
'status': 'error',
|
58 |
-
'msg': 'Face swap failed',
|
59 |
-
'detail': str(e)
|
60 |
-
}
|
61 |
-
|
62 |
-
return response
|
63 |
|
|
|
64 |
|
65 |
-
class
|
66 |
def __init__(self):
|
67 |
-
self.
|
68 |
-
|
69 |
-
def
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
def get_args():
|
78 |
-
parser = argparse.ArgumentParser(
|
79 |
-
description='Inswapper REST API'
|
80 |
-
)
|
81 |
-
|
82 |
-
parser.add_argument(
|
83 |
-
'-p', '--port',
|
84 |
-
help='Port to listen on',
|
85 |
-
type=int,
|
86 |
-
default=80
|
87 |
-
)
|
88 |
-
|
89 |
-
parser.add_argument(
|
90 |
-
'-H', '--host',
|
91 |
-
help='Host to bind to',
|
92 |
-
default='0.0.0.0'
|
93 |
-
)
|
94 |
-
|
95 |
-
return parser.parse_args()
|
96 |
-
|
97 |
-
|
98 |
-
def determine_file_extension(image_data):
|
99 |
-
try:
|
100 |
-
if image_data.startswith('/9j/'):
|
101 |
-
image_extension = '.jpg'
|
102 |
-
elif image_data.startswith('iVBORw0Kg'):
|
103 |
-
image_extension = '.png'
|
104 |
-
else:
|
105 |
-
# Default to png if we can't figure out the extension
|
106 |
-
image_extension = '.png'
|
107 |
-
except Exception as e:
|
108 |
-
image_extension = '.png'
|
109 |
-
|
110 |
-
return image_extension
|
111 |
-
|
112 |
-
|
113 |
-
def write_base64_to_disk(file_b64: str, file_path: str):
|
114 |
-
with open(file_path, 'wb') as file:
|
115 |
-
file.write(base64.b64decode(file_b64))
|
116 |
-
|
117 |
-
|
118 |
-
def get_face_swap_model(model_path: str):
|
119 |
-
model = insightface.model_zoo.get_model(model_path)
|
120 |
-
return model
|
121 |
-
|
122 |
-
|
123 |
-
def get_face_analyser(model_path: str,
|
124 |
-
det_size=(320, 320)):
|
125 |
-
face_analyser = insightface.app.FaceAnalysis(name="buffalo_l", root="./checkpoints")
|
126 |
-
face_analyser.prepare(ctx_id=0, det_size=det_size)
|
127 |
-
return face_analyser
|
128 |
-
|
129 |
-
|
130 |
-
def get_one_face(face_analyser,
|
131 |
-
frame:np.ndarray):
|
132 |
-
face = face_analyser.get(frame)
|
133 |
-
try:
|
134 |
-
return min(face, key=lambda x: x.bbox[0])
|
135 |
-
except ValueError:
|
136 |
-
return None
|
137 |
-
|
138 |
-
|
139 |
-
def get_many_faces(face_analyser,
|
140 |
-
frame:np.ndarray):
|
141 |
-
"""
|
142 |
-
get faces from left to right by order
|
143 |
-
"""
|
144 |
-
try:
|
145 |
-
face = face_analyser.get(frame)
|
146 |
-
return sorted(face, key=lambda x: x.bbox[0])
|
147 |
-
except IndexError:
|
148 |
-
return None
|
149 |
-
|
150 |
-
|
151 |
-
def swap_face(face_swapper,
|
152 |
-
source_faces,
|
153 |
-
target_faces,
|
154 |
-
source_index,
|
155 |
-
target_index,
|
156 |
-
temp_frame):
|
157 |
-
"""
|
158 |
-
paste source_face on target image
|
159 |
-
"""
|
160 |
-
source_face = source_faces[source_index]
|
161 |
-
target_face = target_faces[target_index]
|
162 |
-
|
163 |
-
return face_swapper.get(temp_frame, target_face, source_face, paste_back=True)
|
164 |
-
|
165 |
-
|
166 |
-
def process(source_img: Union[Image.Image, List],
|
167 |
-
target_img: Image.Image,
|
168 |
-
source_indexes: str,
|
169 |
-
target_indexes: str,
|
170 |
-
model: str):
|
171 |
-
|
172 |
-
# load face_analyser
|
173 |
-
face_analyser = get_face_analyser(model)
|
174 |
-
|
175 |
-
# load face_swapper
|
176 |
-
model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model)
|
177 |
-
face_swapper = get_face_swap_model(model_path)
|
178 |
-
|
179 |
-
# read target image
|
180 |
-
target_img = cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR)
|
181 |
-
|
182 |
-
# detect faces that will be replaced in target_img
|
183 |
-
target_faces = get_many_faces(face_analyser, target_img)
|
184 |
-
num_target_faces = len(target_faces)
|
185 |
-
num_source_images = len(source_img)
|
186 |
-
|
187 |
-
if target_faces is not None:
|
188 |
-
temp_frame = copy.deepcopy(target_img)
|
189 |
-
if isinstance(source_img, list) and num_source_images == num_target_faces:
|
190 |
-
logging.debug('Replacing the faces in the target image from left to right by order')
|
191 |
-
for i in range(num_target_faces):
|
192 |
-
source_faces = get_many_faces(face_analyser, cv2.cvtColor(np.array(source_img[i]), cv2.COLOR_RGB2BGR))
|
193 |
-
source_index = i
|
194 |
-
target_index = i
|
195 |
-
|
196 |
-
if source_faces is None:
|
197 |
-
raise Exception('No source faces found!')
|
198 |
-
|
199 |
-
temp_frame = swap_face(
|
200 |
-
face_swapper,
|
201 |
-
source_faces,
|
202 |
-
target_faces,
|
203 |
-
source_index,
|
204 |
-
target_index,
|
205 |
-
temp_frame
|
206 |
-
)
|
207 |
-
elif num_source_images == 1:
|
208 |
-
# detect source faces that will be replaced into the target image
|
209 |
-
source_faces = get_many_faces(face_analyser, cv2.cvtColor(np.array(source_img[0]), cv2.COLOR_RGB2BGR))
|
210 |
-
num_source_faces = len(source_faces)
|
211 |
-
logging.debug(f'Source faces: {num_source_faces}')
|
212 |
-
logging.debug(f'Target faces: {num_target_faces}')
|
213 |
-
|
214 |
-
if source_faces is None:
|
215 |
-
raise Exception('No source faces found!')
|
216 |
-
|
217 |
-
if target_indexes == "-1":
|
218 |
-
if num_source_faces == 1:
|
219 |
-
logging.debug('Replacing all faces in target image with the same face from the source image')
|
220 |
-
num_iterations = num_target_faces
|
221 |
-
elif num_source_faces < num_target_faces:
|
222 |
-
logging.debug('There are less faces in the source image than the target image, replacing as many as we can')
|
223 |
-
num_iterations = num_source_faces
|
224 |
-
elif num_target_faces < num_source_faces:
|
225 |
-
logging.debug('There are less faces in the target image than the source image, replacing as many as we can')
|
226 |
-
num_iterations = num_target_faces
|
227 |
-
else:
|
228 |
-
logging.debug('Replacing all faces in the target image with the faces from the source image')
|
229 |
-
num_iterations = num_target_faces
|
230 |
-
|
231 |
-
for i in range(num_iterations):
|
232 |
-
source_index = 0 if num_source_faces == 1 else i
|
233 |
-
target_index = i
|
234 |
-
|
235 |
-
temp_frame = swap_face(
|
236 |
-
face_swapper,
|
237 |
-
source_faces,
|
238 |
-
target_faces,
|
239 |
-
source_index,
|
240 |
-
target_index,
|
241 |
-
temp_frame
|
242 |
-
)
|
243 |
-
elif source_indexes == '-1' and target_indexes == '-1':
|
244 |
-
logging.debug('Replacing specific face(s) in the target image with the face from the source image')
|
245 |
-
target_indexes = target_indexes.split(',')
|
246 |
-
source_index = 0
|
247 |
-
|
248 |
-
for target_index in target_indexes:
|
249 |
-
target_index = int(target_index)
|
250 |
-
|
251 |
-
temp_frame = swap_face(
|
252 |
-
face_swapper,
|
253 |
-
source_faces,
|
254 |
-
target_faces,
|
255 |
-
source_index,
|
256 |
-
target_index,
|
257 |
-
temp_frame
|
258 |
-
)
|
259 |
-
else:
|
260 |
-
logging.debug('Replacing specific face(s) in the target image with specific face(s) from the source image')
|
261 |
-
|
262 |
-
if source_indexes == "-1":
|
263 |
-
source_indexes = ','.join(map(lambda x: str(x), range(num_source_faces)))
|
264 |
-
|
265 |
-
if target_indexes == "-1":
|
266 |
-
target_indexes = ','.join(map(lambda x: str(x), range(num_target_faces)))
|
267 |
-
|
268 |
-
source_indexes = source_indexes.split(',')
|
269 |
-
target_indexes = target_indexes.split(',')
|
270 |
-
num_source_faces_to_swap = len(source_indexes)
|
271 |
-
num_target_faces_to_swap = len(target_indexes)
|
272 |
-
|
273 |
-
if num_source_faces_to_swap > num_source_faces:
|
274 |
-
raise Exception('Number of source indexes is greater than the number of faces in the source image')
|
275 |
-
|
276 |
-
if num_target_faces_to_swap > num_target_faces:
|
277 |
-
raise Exception('Number of target indexes is greater than the number of faces in the target image')
|
278 |
-
|
279 |
-
if num_source_faces_to_swap > num_target_faces_to_swap:
|
280 |
-
num_iterations = num_source_faces_to_swap
|
281 |
-
else:
|
282 |
-
num_iterations = num_target_faces_to_swap
|
283 |
-
|
284 |
-
if num_source_faces_to_swap == num_target_faces_to_swap:
|
285 |
-
for index in range(num_iterations):
|
286 |
-
source_index = int(source_indexes[index])
|
287 |
-
target_index = int(target_indexes[index])
|
288 |
-
|
289 |
-
if source_index > num_source_faces-1:
|
290 |
-
raise ValueError(f'Source index {source_index} is higher than the number of faces in the source image')
|
291 |
-
|
292 |
-
if target_index > num_target_faces-1:
|
293 |
-
raise ValueError(f'Target index {target_index} is higher than the number of faces in the target image')
|
294 |
-
|
295 |
-
temp_frame = swap_face(
|
296 |
-
face_swapper,
|
297 |
-
source_faces,
|
298 |
-
target_faces,
|
299 |
-
source_index,
|
300 |
-
target_index,
|
301 |
-
temp_frame
|
302 |
-
)
|
303 |
-
else:
|
304 |
-
logging.error('Unsupported face configuration')
|
305 |
-
raise Exception('Unsupported face configuration')
|
306 |
-
result = temp_frame
|
307 |
-
else:
|
308 |
-
logging.error('No target faces found')
|
309 |
-
raise Exception('No target faces found!')
|
310 |
-
|
311 |
-
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
|
312 |
-
return result_image
|
313 |
-
|
314 |
-
|
315 |
-
def face_swap(src_img_path,
|
316 |
-
target_img_path,
|
317 |
-
source_indexes,
|
318 |
-
target_indexes,
|
319 |
-
background_enhance,
|
320 |
-
face_restore,
|
321 |
-
face_upsample,
|
322 |
-
upscale,
|
323 |
-
codeformer_fidelity,
|
324 |
-
output_format):
|
325 |
-
|
326 |
-
source_img_paths = src_img_path.split(';')
|
327 |
-
source_img = [Image.open(img_path) for img_path in source_img_paths]
|
328 |
-
target_img = Image.open(target_img_path)
|
329 |
-
|
330 |
-
# download from https://huggingface.co/ashleykleynhans/inswapper/tree/main
|
331 |
-
model = os.path.join(script_dir, 'checkpoints/inswapper_128.onnx')
|
332 |
-
logging.debug(f'Face swap model: {model}')
|
333 |
-
|
334 |
-
try:
|
335 |
-
logging.debug('Performing face swap')
|
336 |
-
result_image = process(
|
337 |
-
source_img,
|
338 |
-
target_img,
|
339 |
-
source_indexes,
|
340 |
-
target_indexes,
|
341 |
-
model
|
342 |
-
)
|
343 |
-
logging.debug('Face swap complete')
|
344 |
-
except Exception as e:
|
345 |
-
raise
|
346 |
-
|
347 |
-
# make sure the ckpts downloaded successfully
|
348 |
-
check_ckpts()
|
349 |
-
|
350 |
-
if face_restore:
|
351 |
-
# https://huggingface.co/spaces/sczhou/CodeFormer
|
352 |
-
logging.debug('Setting upsampler to RealESRGAN_x2plus')
|
353 |
-
upsampler = set_realesrgan()
|
354 |
-
|
355 |
-
if torch.cuda.is_available():
|
356 |
-
torch_device = 'cuda'
|
357 |
-
else:
|
358 |
-
torch_device = 'cpu'
|
359 |
-
|
360 |
-
logging.debug(f'Torch device: {torch_device.upper()}')
|
361 |
-
device = torch.device(torch_device)
|
362 |
-
|
363 |
-
codeformer_net = ARCH_REGISTRY.get('CodeFormer')(
|
364 |
-
dim_embd=512,
|
365 |
-
codebook_size=1024,
|
366 |
-
n_head=8,
|
367 |
-
n_layers=9,
|
368 |
-
connect_list=['32', '64', '128', '256'],
|
369 |
-
).to(device)
|
370 |
-
|
371 |
-
ckpt_path = os.path.join(script_dir, 'CodeFormer/CodeFormer/weights/CodeFormer/codeformer.pth')
|
372 |
-
logging.debug(f'Loading CodeFormer model: {ckpt_path}')
|
373 |
-
checkpoint = torch.load(ckpt_path)['params_ema']
|
374 |
-
codeformer_net.load_state_dict(checkpoint)
|
375 |
-
codeformer_net.eval()
|
376 |
-
result_image = cv2.cvtColor(np.array(result_image), cv2.COLOR_RGB2BGR)
|
377 |
-
logging.debug('Performing face restoration using CodeFormer')
|
378 |
-
|
379 |
-
try:
|
380 |
-
result_image = face_restoration(
|
381 |
-
result_image,
|
382 |
-
background_enhance,
|
383 |
-
face_upsample,
|
384 |
-
upscale,
|
385 |
-
codeformer_fidelity,
|
386 |
-
upsampler,
|
387 |
-
codeformer_net,
|
388 |
-
device
|
389 |
)
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
output_buffer = io.BytesIO()
|
397 |
-
result_image.save(output_buffer, format=output_format)
|
398 |
-
image_data = output_buffer.getvalue()
|
399 |
-
|
400 |
-
return base64.b64encode(image_data).decode('utf-8')
|
401 |
-
|
402 |
-
|
403 |
-
app = Flask(__name__)
|
404 |
-
|
405 |
-
|
406 |
-
@app.errorhandler(400)
|
407 |
-
def not_found(error):
|
408 |
-
return make_response(jsonify(
|
409 |
-
{
|
410 |
-
'status': 'error',
|
411 |
-
'msg': f'Bad Request',
|
412 |
-
'detail': str(error)
|
413 |
-
}
|
414 |
-
), 400)
|
415 |
-
|
416 |
-
|
417 |
-
@app.errorhandler(404)
|
418 |
-
def not_found(error):
|
419 |
-
return make_response(jsonify(
|
420 |
-
{
|
421 |
-
'status': 'error',
|
422 |
-
'msg': f'{request.url} not found',
|
423 |
-
'detail': str(error)
|
424 |
-
}
|
425 |
-
), 404)
|
426 |
-
|
427 |
-
|
428 |
-
@app.errorhandler(500)
|
429 |
-
def internal_server_error(error):
|
430 |
-
return make_response(jsonify(
|
431 |
-
{
|
432 |
-
'status': 'error',
|
433 |
-
'msg': 'Internal Server Error',
|
434 |
-
'detail': str(error)
|
435 |
-
}
|
436 |
-
), 500)
|
437 |
-
|
438 |
-
|
439 |
-
@app.route('/', methods=['GET'])
|
440 |
-
def ping():
|
441 |
-
return make_response(jsonify(
|
442 |
-
{
|
443 |
-
'status': 'ok'
|
444 |
-
}
|
445 |
-
), 200)
|
446 |
-
|
447 |
-
|
448 |
-
@app.route('/faceswap', methods=['POST'])
|
449 |
-
def face_swap_api():
|
450 |
-
total_timer = Timer()
|
451 |
-
logging.debug('Received face swap API request')
|
452 |
-
payload = request.get_json()
|
453 |
-
|
454 |
-
if not os.path.exists(TMP_PATH):
|
455 |
-
logging.debug(f'Creating temporary directory: {TMP_PATH}')
|
456 |
-
os.makedirs(TMP_PATH)
|
457 |
-
|
458 |
-
unique_id = uuid.uuid4()
|
459 |
-
source_image_data = payload['source_image']
|
460 |
-
target_image_data = payload['target_image']
|
461 |
-
|
462 |
-
# Decode the source image data
|
463 |
-
source_image = base64.b64decode(source_image_data)
|
464 |
-
source_file_extension = determine_file_extension(source_image_data)
|
465 |
-
source_image_path = f'{TMP_PATH}/source_{unique_id}{source_file_extension}'
|
466 |
-
|
467 |
-
# Save the source image to disk
|
468 |
-
with open(source_image_path, 'wb') as source_file:
|
469 |
-
source_file.write(source_image)
|
470 |
-
|
471 |
-
# Decode the target image data
|
472 |
-
target_image = base64.b64decode(target_image_data)
|
473 |
-
target_file_extension = determine_file_extension(target_image_data)
|
474 |
-
target_image_path = f'{TMP_PATH}/target_{unique_id}{target_file_extension}'
|
475 |
|
476 |
-
|
477 |
-
|
478 |
-
|
|
|
|
|
|
|
479 |
|
480 |
-
|
481 |
-
|
482 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
483 |
|
484 |
-
|
485 |
-
|
486 |
|
487 |
-
|
488 |
-
|
489 |
|
490 |
-
|
491 |
-
|
492 |
|
493 |
-
|
494 |
-
|
495 |
|
496 |
-
|
497 |
-
|
|
|
498 |
|
499 |
-
|
500 |
-
|
|
|
501 |
|
502 |
-
|
503 |
-
|
504 |
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
logging.debug(f'Face Restoration: {payload["face_restore"]}')
|
510 |
-
logging.debug(f'Face Upsampling: {payload["face_upsample"]}')
|
511 |
-
logging.debug(f'Upscale: {payload["upscale"]}')
|
512 |
-
logging.debug(f'Codeformer Fidelity: {payload["codeformer_fidelity"]}')
|
513 |
-
logging.debug(f'Output Format: {payload["output_format"]}')
|
514 |
|
515 |
-
|
516 |
-
|
517 |
-
target_image_path,
|
518 |
-
payload['source_indexes'],
|
519 |
-
payload['target_indexes'],
|
520 |
-
payload['background_enhance'],
|
521 |
-
payload['face_restore'],
|
522 |
-
payload['face_upsample'],
|
523 |
-
payload['upscale'],
|
524 |
-
payload['codeformer_fidelity'],
|
525 |
-
payload['output_format']
|
526 |
-
)
|
527 |
|
528 |
-
|
|
|
529 |
|
530 |
-
|
531 |
-
'status': 'ok',
|
532 |
-
'image': result_image
|
533 |
-
}
|
534 |
-
except Exception as e:
|
535 |
-
logging.error(e)
|
536 |
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
}
|
542 |
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
|
|
|
|
554 |
|
555 |
-
|
556 |
-
args = get_args()
|
557 |
|
558 |
-
|
559 |
-
|
560 |
-
host=args.host,
|
561 |
-
port=args.port
|
562 |
-
)
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
|
|
|
|
2 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import time
|
4 |
+
import tempfile
|
5 |
import cv2
|
6 |
import insightface
|
7 |
+
import onnxruntime
|
8 |
+
import gfpgan
|
9 |
+
import io
|
10 |
+
import concurrent.futures
|
11 |
import numpy as np
|
|
|
12 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
app = Flask(__name__)
|
15 |
|
16 |
+
class Predictor:
|
17 |
def __init__(self):
|
18 |
+
self.setup()
|
19 |
+
|
20 |
+
def setup(self):
|
21 |
+
os.makedirs('models', exist_ok=True)
|
22 |
+
os.chdir('models')
|
23 |
+
if not os.path.exists('GFPGANv1.4.pth'):
|
24 |
+
os.system(
|
25 |
+
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
)
|
27 |
+
if not os.path.exists('inswapper_128.onnx'):
|
28 |
+
os.system(
|
29 |
+
'wget https://huggingface.co/ashleykleynhans/inswapper/resolve/main/inswapper_128.onnx'
|
30 |
+
)
|
31 |
+
os.chdir('..')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
"""Load the model into memory to make running multiple predictions efficient"""
|
34 |
+
self.face_swapper = insightface.model_zoo.get_model('models/inswapper_128.onnx',
|
35 |
+
providers=onnxruntime.get_available_providers())
|
36 |
+
self.face_enhancer = gfpgan.GFPGANer(model_path='models/GFPGANv1.4.pth', upscale=1)
|
37 |
+
self.face_analyser = insightface.app.FaceAnalysis(name='buffalo_l')
|
38 |
+
self.face_analyser.prepare(ctx_id=0, det_size=(640, 640))
|
39 |
|
40 |
+
def get_face(self, img_data):
|
41 |
+
analysed = self.face_analyser.get(img_data)
|
42 |
+
try:
|
43 |
+
largest = max(analysed, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))
|
44 |
+
return largest
|
45 |
+
except:
|
46 |
+
print("No face found")
|
47 |
+
return None
|
48 |
+
|
49 |
+
def process_images(self, input_image, swap_image):
|
50 |
+
"""Process a pair of images: target image and swap image"""
|
51 |
+
try:
|
52 |
+
# Read the input images directly from memory
|
53 |
+
input_image_data = np.asarray(bytearray(input_image.read()), dtype=np.uint8)
|
54 |
+
swap_image_data = np.asarray(bytearray(swap_image.read()), dtype=np.uint8)
|
55 |
|
56 |
+
frame = cv2.imdecode(input_image_data, cv2.IMREAD_COLOR)
|
57 |
+
swap_frame = cv2.imdecode(swap_image_data, cv2.IMREAD_COLOR)
|
58 |
|
59 |
+
face = self.get_face(frame)
|
60 |
+
source_face = self.get_face(swap_frame)
|
61 |
|
62 |
+
if face is None or source_face is None:
|
63 |
+
return None
|
64 |
|
65 |
+
result = self.face_swapper.get(frame, face, source_face, paste_back=True)
|
66 |
+
_, _, result = self.face_enhancer.enhance(result, paste_back=True)
|
67 |
|
68 |
+
# Create a result image in memory
|
69 |
+
_, result_image = cv2.imencode('.jpg', result)
|
70 |
+
return result_image.tobytes()
|
71 |
|
72 |
+
except Exception as e:
|
73 |
+
print(f"Error in processing images: {e}")
|
74 |
+
return None
|
75 |
|
76 |
+
# Instantiate the Predictor class
|
77 |
+
predictor = Predictor()
|
78 |
|
79 |
+
@app.route('/predict', methods=['POST'])
|
80 |
+
def predict():
|
81 |
+
if 'target_images' not in request.files or 'swap_images' not in request.files:
|
82 |
+
return jsonify({'error': 'No image files provided'}), 400
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
+
target_images = request.files.getlist('target_images')
|
85 |
+
swap_images = request.files.getlist('swap_images')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
if len(target_images) != len(swap_images):
|
88 |
+
return jsonify({'error': 'Number of target images must match number of swap images'}), 400
|
89 |
|
90 |
+
results = []
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
93 |
+
future_to_pair = {
|
94 |
+
executor.submit(predictor.process_images, target_images[i], swap_images[i]): i
|
95 |
+
for i in range(len(target_images))
|
96 |
}
|
97 |
|
98 |
+
for future in concurrent.futures.as_completed(future_to_pair):
|
99 |
+
idx = future_to_pair[future]
|
100 |
+
result = future.result()
|
101 |
+
if result:
|
102 |
+
results.append({
|
103 |
+
'index': idx,
|
104 |
+
'result_image': result
|
105 |
+
})
|
106 |
+
else:
|
107 |
+
results.append({
|
108 |
+
'index': idx,
|
109 |
+
'error': 'Face swap failed'
|
110 |
+
})
|
111 |
|
112 |
+
return jsonify({'results': results})
|
|
|
113 |
|
114 |
+
if __name__ == "__main__":
|
115 |
+
app.run(debug=True, threaded=True)
|
|
|
|
|
|