Spaces:
Sleeping
Sleeping
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool | |
import datetime | |
import math | |
import requests | |
import pytz | |
import yaml | |
from tools.final_answer import FinalAnswerTool | |
from Gradio_UI import GradioUI | |
# Below is an example of a tool that does nothing. Amaze us with your creativity ! | |
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type | |
#Keep this format for the description / args / args description but feel free to modify the tool | |
"""A tool that does nothing yet | |
Args: | |
arg1: the first argument | |
arg2: the second argument | |
""" | |
return "What magic will you build ?" | |
def get_square_root_tool(input_number:int)-> int: #it's import to specify the return type | |
#Keep this format for the description / args / args description but feel free to modify the tool | |
"""A tool that does nothing yet | |
Args: | |
input_number: an integer whose square root is to be calculated | |
""" | |
try: | |
# get square root | |
square_root = math.sqrt(input_number) | |
return f"Square root of {input_number} is: {square_root}" | |
except Exception as e: | |
return f"Error fetching Square root of '{input_number}': {str(e)}" | |
def get_stock_public_sentiment(stock:str)-> int: #it's import to specify the return type | |
#Keep this format for the description / args / args description but feel free to modify the tool | |
"""A tool that does nothing yet | |
Args: | |
stock: a string which represents the ticker name or name of a stock whose public sentiment is to be calculated | |
""" | |
search = DuckDuckGoSearchResults(backend="news",output_format="list") | |
search_result = search.invoke("Tesla") | |
print(search_result) | |
def classify_educational_article(text: str) -> str: | |
""" | |
Classifier for judging the educational value of web pages. | |
Args: | |
text: The content of the educational article to be classified. | |
Returns: | |
str: This function will output a dictionary with the input text, the predicted score, and an integer score between 0 and 5 | |
""" | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/fineweb-edu-classifier") | |
model = AutoModelForSequenceClassification.from_pretrained("HuggingFaceTB/fineweb-edu-classifier") | |
inputs = tokenizer(text, return_tensors="pt", padding="longest", truncation=True) | |
outputs = model(**inputs) | |
logits = outputs.logits.squeeze(-1).float().detach().numpy() | |
score = logits.item() | |
result = {"text": text, | |
"score": score, | |
"int_score": int(round(max(0, min(score, 5)))), | |
} | |
return result | |
def get_current_time_in_timezone(timezone: str) -> str: | |
"""A tool that fetches the current local time in a specified timezone. | |
Args: | |
timezone: A string representing a valid timezone (e.g., 'America/New_York'). | |
""" | |
try: | |
# Create timezone object | |
tz = pytz.timezone(timezone) | |
# Get current time in that timezone | |
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") | |
return f"The current local time in {timezone} is: {local_time}" | |
except Exception as e: | |
return f"Error fetching time for timezone '{timezone}': {str(e)}" | |
final_answer = FinalAnswerTool() | |
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: | |
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' | |
model = HfApiModel( | |
max_tokens=2096, | |
temperature=0.5, | |
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded | |
custom_role_conversions=None, | |
) | |
# Import tool from Hub | |
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) | |
with open("prompts.yaml", 'r') as stream: | |
prompt_templates = yaml.safe_load(stream) | |
agent = CodeAgent( | |
model=model, | |
tools=[final_answer,image_generation_tool,get_square_root_tool,classify_educational_article], ## add your tools here (don't remove final answer) | |
max_steps=6, | |
verbosity_level=1, | |
grammar=None, | |
planning_interval=None, | |
name=None, | |
description=None, | |
prompt_templates=prompt_templates | |
) | |
GradioUI(agent).launch() |