Spaces:
Runtime error
Runtime error
v0.1.1
Browse files- src/llm/geminiLLM.py +114 -0
- src/llm/llmFactory.py +3 -0
- src/main.py +2 -2
src/llm/geminiLLM.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, List, Mapping, Optional, Dict
|
2 |
+
from pydantic import Extra, Field #, root_validator, model_validator
|
3 |
+
import os,json
|
4 |
+
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
5 |
+
from langchain.llms.base import LLM
|
6 |
+
import google.generativeai as genai
|
7 |
+
from google.generativeai import types
|
8 |
+
import ast
|
9 |
+
#from langchain.llms import GooglePalm
|
10 |
+
import requests,logging
|
11 |
+
|
12 |
+
logger=logging.getLogger("llm")
|
13 |
+
|
14 |
+
class GeminiLLM(LLM):
|
15 |
+
|
16 |
+
model_name: str = "gemini-pro"
|
17 |
+
temperature: float = 0
|
18 |
+
max_tokens: int = 2048
|
19 |
+
stop: Optional[List] = []
|
20 |
+
prev_prompt: Optional[str]=""
|
21 |
+
prev_stop: Optional[str]=""
|
22 |
+
prev_run_manager:Optional[Any]=None
|
23 |
+
model: Optional[Any]=None
|
24 |
+
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
**kwargs
|
28 |
+
):
|
29 |
+
super().__init__(**kwargs)
|
30 |
+
self.model=genai.GenerativeModel(self.model_name)
|
31 |
+
#self.model = palm.Text2Text(self.model_name)
|
32 |
+
|
33 |
+
@property
|
34 |
+
def _llm_type(self) -> str:
|
35 |
+
return "text2text-generation"
|
36 |
+
|
37 |
+
def _call(
|
38 |
+
self,
|
39 |
+
prompt: str,
|
40 |
+
stop: Optional[List[str]] = None,
|
41 |
+
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
42 |
+
) -> str:
|
43 |
+
self.prev_prompt=prompt
|
44 |
+
self.prev_stop=stop
|
45 |
+
self.prev_run_manager=run_manager
|
46 |
+
#print(types.SafetySettingDict)
|
47 |
+
if stop == None:
|
48 |
+
stop=self.stop
|
49 |
+
logger.debug("\nLLM in use is:" +self._llm_type)
|
50 |
+
logger.debug("Request to LLM is "+prompt)
|
51 |
+
|
52 |
+
response=self.model.generate_content(prompt,
|
53 |
+
generation_config={"stop_sequences":self.stop,
|
54 |
+
"temperature":self.temperature, "max_output_tokens":self.max_tokens},
|
55 |
+
safety_settings=[{"category":"HARM_CATEGORY_SEXUALLY_EXPLICIT","threshold":"BLOCK_NONE"},
|
56 |
+
{"category":"HARM_CATEGORY_HATE_SPEECH","threshold":"BLOCK_NONE"},
|
57 |
+
{"category":"HARM_CATEGORY_HARASSMENT","threshold":"BLOCK_NONE"},
|
58 |
+
{"category":"HARM_CATEGORY_DANGEROUS_CONTENT","threshold":"BLOCK_NONE"}],
|
59 |
+
stream=False
|
60 |
+
)
|
61 |
+
try:
|
62 |
+
val=response.text
|
63 |
+
if val == None:
|
64 |
+
logger.debug("Response from LLM was None\n")
|
65 |
+
filterStr=""
|
66 |
+
for item in response.filters:
|
67 |
+
for key,val in item.items():
|
68 |
+
filterStr+=key+":"+str(val)
|
69 |
+
logger.error("Will switch to fallback LLM as response from palm is None::"+filterStr)
|
70 |
+
raise(Exception)
|
71 |
+
else:
|
72 |
+
logger.debug("Response from LLM "+val)
|
73 |
+
except Exception as ex:
|
74 |
+
logger.error("Will switch to fallback LLM as response from palm is None::")
|
75 |
+
raise(Exception)
|
76 |
+
if run_manager:
|
77 |
+
run_manager.on_llm_end(val)
|
78 |
+
return val
|
79 |
+
|
80 |
+
@property
|
81 |
+
def _identifying_params(self) -> Mapping[str, Any]:
|
82 |
+
"""Get the identifying parameters."""
|
83 |
+
return {"name": self.model_name, "type": "palm"}
|
84 |
+
|
85 |
+
def extractJson(self,val:str) -> Any:
|
86 |
+
"""Helper function to extract json from this LLMs output"""
|
87 |
+
#This is assuming the json is the first item within ````
|
88 |
+
# palm is responding always with ```json and ending with ```, however sometimes response is not complete
|
89 |
+
# in case trailing ``` is not seen, we will call generation again with prev_prompt and result appended to it
|
90 |
+
try:
|
91 |
+
count=0
|
92 |
+
while val.startswith("```json") and not val.endswith("```") and count<7:
|
93 |
+
val=self._call(prompt=self.prev_prompt+" "+val,stop=self.prev_stop,run_manager=self.prev_run_manager)
|
94 |
+
count+=1
|
95 |
+
v2=val.replace("```json","```").split("```")[1]
|
96 |
+
try:
|
97 |
+
v4=json.loads(v2)
|
98 |
+
except:
|
99 |
+
#v3=v2.replace("\n","").replace("\r","").replace("'","\"")
|
100 |
+
v3=json.dumps(ast.literal_eval(v2))
|
101 |
+
v4=json.loads(v3)
|
102 |
+
except:
|
103 |
+
v2=val.replace("\n","").replace("\r","")
|
104 |
+
v3=json.dumps(ast.literal_eval(val))
|
105 |
+
#v3=v2.replace("'","\"")
|
106 |
+
v4=json.loads(v3)
|
107 |
+
#v4=json.loads(v2)
|
108 |
+
return v4
|
109 |
+
|
110 |
+
def extractPython(self,val:str) -> Any:
|
111 |
+
"""Helper function to extract python from this LLMs output"""
|
112 |
+
#This is assuming the python is the first item within ````
|
113 |
+
v2=val.replace("```python","```").split("```")[1]
|
114 |
+
return v2
|
src/llm/llmFactory.py
CHANGED
@@ -3,6 +3,7 @@ from baseInfra.dbInterface import DbInterface
|
|
3 |
from llm.hostedLLM import HostedLLM
|
4 |
from llm.togetherLLM import TogetherLLM
|
5 |
from llm.palmLLM import PalmLLM
|
|
|
6 |
|
7 |
|
8 |
class LLMFactory:
|
@@ -49,6 +50,8 @@ class LLMFactory:
|
|
49 |
return TogetherLLM(**llm_config)
|
50 |
elif llm_type == "palmLLM":
|
51 |
return PalmLLM(**llm_config)
|
|
|
|
|
52 |
else:
|
53 |
logger.error(f"Invalid LLM type: {llm_type}")
|
54 |
raise ValueError(f"Invalid LLM type: {llm_type}")
|
|
|
3 |
from llm.hostedLLM import HostedLLM
|
4 |
from llm.togetherLLM import TogetherLLM
|
5 |
from llm.palmLLM import PalmLLM
|
6 |
+
from llm.geminiLLM import GeminiLLM
|
7 |
|
8 |
|
9 |
class LLMFactory:
|
|
|
50 |
return TogetherLLM(**llm_config)
|
51 |
elif llm_type == "palmLLM":
|
52 |
return PalmLLM(**llm_config)
|
53 |
+
elif llm_type == "geminiLLM":
|
54 |
+
return GeminiLLM(**llm_config)
|
55 |
else:
|
56 |
logger.error(f"Invalid LLM type: {llm_type}")
|
57 |
raise ValueError(f"Invalid LLM type: {llm_type}")
|
src/main.py
CHANGED
@@ -3,7 +3,7 @@ import logging,os
|
|
3 |
import fastapi
|
4 |
from fastapi import Body, Depends
|
5 |
import uvicorn
|
6 |
-
from fastapi import HTTPException , status
|
7 |
from fastapi.responses import JSONResponse
|
8 |
from fastapi.middleware.cors import CORSMiddleware
|
9 |
from fastapi import FastAPI as Response
|
@@ -60,7 +60,7 @@ app.add_middleware(
|
|
60 |
api_base="/api/v1"
|
61 |
|
62 |
@app.post(api_base+"/getMatchingDocs")
|
63 |
-
async def get_matching_docs(inStr: str, kwargs: Dict [Any, Any] ) -> Any:
|
64 |
"""
|
65 |
Gets the query embeddings and uses metadata appropriately and gets the matching docs for query
|
66 |
TODO: Add parameter for type of query and number of docs to return
|
|
|
3 |
import fastapi
|
4 |
from fastapi import Body, Depends
|
5 |
import uvicorn
|
6 |
+
from fastapi import BackgroundTasks,HTTPException , status
|
7 |
from fastapi.responses import JSONResponse
|
8 |
from fastapi.middleware.cors import CORSMiddleware
|
9 |
from fastapi import FastAPI as Response
|
|
|
60 |
api_base="/api/v1"
|
61 |
|
62 |
@app.post(api_base+"/getMatchingDocs")
|
63 |
+
async def get_matching_docs(inStr: str, kwargs: Dict [Any, Any] ,background_tasks:BackgroundTasks) -> Any:
|
64 |
"""
|
65 |
Gets the query embeddings and uses metadata appropriately and gets the matching docs for query
|
66 |
TODO: Add parameter for type of query and number of docs to return
|