Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import os | |
# Retrieve the Hugging Face token from environment variables | |
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN") | |
if HF_TOKEN is None: | |
raise ValueError("HUGGINGFACE_TOKEN is not set. Add it in your Space's secrets.") | |
# Load model and tokenizer with authentication | |
MODEL_NAME = "meta-llama/Llama-Guard-3-1B" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_auth_token=HF_TOKEN) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, use_auth_token=HF_TOKEN) | |
# Streamlit UI | |
st.title("AI Safe Content Checker Tool") | |
st.write("Enter text below, and the model will check if it's safe.") | |
# User input | |
user_input = st.text_area("Enter your text here:") | |
def check_content(text): | |
prompt = f"<|user|>\n{text}\n<|assistant|>\n" # Ensure correct formatting for input | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate(**inputs, max_new_tokens=50) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response # Check the response format to extract category | |
if st.button("Check Content"): | |
if user_input: | |
result = check_content(user_input) | |
st.subheader("Moderation Result:") | |
st.write(result) # Print raw result first to analyze format | |
else: | |
st.warning("Please enter some text.") |