Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,25 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from diffusers import AutoPipelineForText2Image, DPMSolverMultistepScheduler
|
3 |
+
import torch
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
|
6 |
+
# Load the model
|
7 |
+
def load_model():
|
8 |
+
pipe = AutoPipelineForText2Image.from_pretrained('lykon/dreamshaper-xl-v2-turbo', torch_dtype=torch.float16, variant="fp16")
|
9 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
10 |
+
pipe = pipe.to("cuda")
|
11 |
+
return pipe
|
12 |
|
13 |
+
# Main function to generate image
|
14 |
+
def generate_image(prompt):
|
15 |
+
pipe = load_model()
|
16 |
+
generator = torch.manual_seed(0)
|
17 |
+
image = pipe(prompt, num_inference_steps=6, guidance_scale=2).images[0]
|
18 |
+
return image
|
19 |
+
|
20 |
+
# Define Gradio Interface
|
21 |
+
inputs = gr.inputs.Textbox(lines=5, label="Enter your text prompt")
|
22 |
+
output = gr.outputs.Image(label="Generated Image")
|
23 |
+
|
24 |
+
# Create Gradio Interface
|
25 |
+
gr.Interface(fn=generate_image, inputs=inputs, outputs=output, title="Text to Image Generation").launch()
|