Spaces:
Runtime error
Runtime error
"""Wrapper around Together AI's Completion API.""" | |
import logging | |
import warnings | |
from typing import Any, Dict, List, Optional | |
import requests | |
from aiohttp import ClientSession | |
from langchain_core.callbacks import ( | |
AsyncCallbackManagerForLLMRun, | |
CallbackManagerForLLMRun, | |
) | |
from langchain_core.language_models.llms import LLM | |
from langchain_core.pydantic_v1 import Extra, SecretStr, root_validator | |
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env | |
logger = logging.getLogger(__name__) | |
class Together(LLM): | |
"""LLM models from `Together`. | |
To use, you'll need an API key which you can find here: | |
https://api.together.ai/settings/api-keys. This can be passed in as init param | |
``together_api_key`` or set as environment variable ``TOGETHER_API_KEY``. | |
Together AI API reference: https://docs.together.ai/reference/completions | |
Example: | |
.. code-block:: python | |
from langchain_together import Together | |
model = Together(model_name="mistralai/Mixtral-8x7B-Instruct-v0.1") | |
""" | |
base_url: str = "https://api.together.ai/v1/completions" | |
"""Base completions API URL.""" | |
together_api_key: SecretStr | |
"""Together AI API key. Get it here: https://api.together.ai/settings/api-keys""" | |
model: str | |
"""Model name. Available models listed here: | |
Base Models: https://docs.together.ai/docs/inference-models#language-models | |
Chat Models: https://docs.together.ai/docs/inference-models#chat-models | |
""" | |
temperature: Optional[float] = None | |
"""Model temperature.""" | |
top_p: Optional[float] = None | |
"""Used to dynamically adjust the number of choices for each predicted token based | |
on the cumulative probabilities. A value of 1 will always yield the same | |
output. A temperature less than 1 favors more correctness and is appropriate | |
for question answering or summarization. A value greater than 1 introduces more | |
randomness in the output. | |
""" | |
top_k: Optional[int] = None | |
"""Used to limit the number of choices for the next predicted word or token. It | |
specifies the maximum number of tokens to consider at each step, based on their | |
probability of occurrence. This technique helps to speed up the generation | |
process and can improve the quality of the generated text by focusing on the | |
most likely options. | |
""" | |
max_tokens: Optional[int] = None | |
"""The maximum number of tokens to generate.""" | |
repetition_penalty: Optional[float] = None | |
"""A number that controls the diversity of generated text by reducing the | |
likelihood of repeated sequences. Higher values decrease repetition. | |
""" | |
logprobs: Optional[int] = None | |
"""An integer that specifies how many top token log probabilities are included in | |
the response for each token generation step. | |
""" | |
class Config: | |
"""Configuration for this pydantic object.""" | |
extra = Extra.forbid | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that api key exists in environment.""" | |
values["together_api_key"] = convert_to_secret_str( | |
get_from_dict_or_env(values, "together_api_key", "TOGETHER_API_KEY") | |
) | |
return values | |
def validate_max_tokens(cls, values: Dict) -> Dict: | |
""" | |
The v1 completions endpoint, has max_tokens as required parameter. | |
Set a default value and warn if the parameter is missing. | |
""" | |
if values.get("max_tokens") is None: | |
warnings.warn( | |
"The completions endpoint, has 'max_tokens' as required argument. " | |
"The default value is being set to 200 " | |
"Consider setting this value, when initializing LLM" | |
) | |
values["max_tokens"] = 200 # Default Value | |
return values | |
def _llm_type(self) -> str: | |
"""Return type of model.""" | |
return "together" | |
def _format_output(self, output: dict) -> str: | |
return output["choices"][0]["text"] | |
def default_params(self) -> Dict[str, Any]: | |
return { | |
"model": self.model, | |
"temperature": self.temperature, | |
"top_p": self.top_p, | |
"top_k": self.top_k, | |
"max_tokens": self.max_tokens, | |
"repetition_penalty": self.repetition_penalty, | |
} | |
def _call( | |
self, | |
prompt: str, | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> str: | |
"""Call out to Together's text generation endpoint. | |
Args: | |
prompt: The prompt to pass into the model. | |
Returns: | |
The string generated by the model.. | |
""" | |
headers = { | |
"Authorization": f"Bearer {self.together_api_key.get_secret_value()}", | |
"Content-Type": "application/json", | |
} | |
stop_to_use = stop[0] if stop and len(stop) == 1 else stop | |
payload: Dict[str, Any] = { | |
**self.default_params, | |
"prompt": prompt, | |
"stop": stop_to_use, | |
**kwargs, | |
} | |
# filter None values to not pass them to the http payload | |
payload = {k: v for k, v in payload.items() if v is not None} | |
response = requests.post(url=self.base_url, json=payload, headers=headers) | |
if response.status_code >= 500: | |
raise Exception(f"Together Server: Error {response.status_code}") | |
elif response.status_code >= 400: | |
raise ValueError(f"Together received an invalid payload: {response.text}") | |
elif response.status_code != 200: | |
raise Exception( | |
f"Together returned an unexpected response with status " | |
f"{response.status_code}: {response.text}" | |
) | |
data = response.json() | |
output = self._format_output(data) | |
return output | |
async def _acall( | |
self, | |
prompt: str, | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> str: | |
"""Call Together model to get predictions based on the prompt. | |
Args: | |
prompt: The prompt to pass into the model. | |
Returns: | |
The string generated by the model. | |
""" | |
headers = { | |
"Authorization": f"Bearer {self.together_api_key.get_secret_value()}", | |
"Content-Type": "application/json", | |
} | |
stop_to_use = stop[0] if stop and len(stop) == 1 else stop | |
payload: Dict[str, Any] = { | |
**self.default_params, | |
"prompt": prompt, | |
"stop": stop_to_use, | |
**kwargs, | |
} | |
# filter None values to not pass them to the http payload | |
payload = {k: v for k, v in payload.items() if v is not None} | |
async with ClientSession() as session: | |
async with session.post( | |
self.base_url, json=payload, headers=headers | |
) as response: | |
if response.status >= 500: | |
raise Exception(f"Together Server: Error {response.status}") | |
elif response.status >= 400: | |
raise ValueError( | |
f"Together received an invalid payload: {response.text}" | |
) | |
elif response.status != 200: | |
raise Exception( | |
f"Together returned an unexpected response with status " | |
f"{response.status}: {response.text}" | |
) | |
response_json = await response.json() | |
output = self._format_output(response_json) | |
return output | |