Spaces:
Runtime error
Runtime error
from typing import List, Tuple | |
from langchain.agents import AgentExecutor | |
from langchain.agents.format_scratchpad import format_to_openai_function_messages | |
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser | |
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder | |
from langchain.pydantic_v1 import BaseModel, Field | |
from langchain.tools.render import format_tool_to_openai_function | |
from langchain_community.chat_models import ChatOpenAI | |
from langchain_core.messages import AIMessage, HumanMessage | |
from neo4j_semantic_layer.information_tool import InformationTool | |
from neo4j_semantic_layer.memory_tool import MemoryTool | |
from neo4j_semantic_layer.recommendation_tool import RecommenderTool | |
llm = ChatOpenAI(temperature=0, model="gpt-4") | |
tools = [InformationTool(), RecommenderTool(), MemoryTool()] | |
llm_with_tools = llm.bind(functions=[format_tool_to_openai_function(t) for t in tools]) | |
prompt = ChatPromptTemplate.from_messages( | |
[ | |
( | |
"system", | |
"You are a helpful assistant that finds information about movies " | |
" and recommends them. If tools require follow up questions, " | |
"make sure to ask the user for clarification. Make sure to include any " | |
"available options that need to be clarified in the follow up questions", | |
), | |
MessagesPlaceholder(variable_name="chat_history"), | |
("user", "{input}"), | |
MessagesPlaceholder(variable_name="agent_scratchpad"), | |
] | |
) | |
def _format_chat_history(chat_history: List[Tuple[str, str]]): | |
buffer = [] | |
for human, ai in chat_history: | |
buffer.append(HumanMessage(content=human)) | |
buffer.append(AIMessage(content=ai)) | |
return buffer | |
agent = ( | |
{ | |
"input": lambda x: x["input"], | |
"chat_history": lambda x: ( | |
_format_chat_history(x["chat_history"]) if x.get("chat_history") else [] | |
), | |
"agent_scratchpad": lambda x: format_to_openai_function_messages( | |
x["intermediate_steps"] | |
), | |
} | |
| prompt | |
| llm_with_tools | |
| OpenAIFunctionsAgentOutputParser() | |
) | |
# Add typing for input | |
class AgentInput(BaseModel): | |
input: str | |
chat_history: List[Tuple[str, str]] = Field( | |
..., extra={"widget": {"type": "chat", "input": "input", "output": "output"}} | |
) | |
agent_executor = AgentExecutor(agent=agent, tools=tools).with_types( | |
input_type=AgentInput | |
) | |