Spaces:
Runtime error
Runtime error
"""Math utils.""" | |
import logging | |
from typing import List, Optional, Tuple, Union | |
import numpy as np | |
logger = logging.getLogger(__name__) | |
Matrix = Union[List[List[float]], List[np.ndarray], np.ndarray] | |
def cosine_similarity(X: Matrix, Y: Matrix) -> np.ndarray: | |
"""Row-wise cosine similarity between two equal-width matrices.""" | |
if len(X) == 0 or len(Y) == 0: | |
return np.array([]) | |
X = np.array(X) | |
Y = np.array(Y) | |
if X.shape[1] != Y.shape[1]: | |
raise ValueError( | |
f"Number of columns in X and Y must be the same. X has shape {X.shape} " | |
f"and Y has shape {Y.shape}." | |
) | |
try: | |
import simsimd as simd | |
X = np.array(X, dtype=np.float32) | |
Y = np.array(Y, dtype=np.float32) | |
Z = 1 - np.array(simd.cdist(X, Y, metric="cosine")) | |
return Z | |
except ImportError: | |
logger.debug( | |
"Unable to import simsimd, defaulting to NumPy implementation. If you want " | |
"to use simsimd please install with `pip install simsimd`." | |
) | |
X_norm = np.linalg.norm(X, axis=1) | |
Y_norm = np.linalg.norm(Y, axis=1) | |
# Ignore divide by zero errors run time warnings as those are handled below. | |
with np.errstate(divide="ignore", invalid="ignore"): | |
similarity = np.dot(X, Y.T) / np.outer(X_norm, Y_norm) | |
similarity[np.isnan(similarity) | np.isinf(similarity)] = 0.0 | |
return similarity | |
def cosine_similarity_top_k( | |
X: Matrix, | |
Y: Matrix, | |
top_k: Optional[int] = 5, | |
score_threshold: Optional[float] = None, | |
) -> Tuple[List[Tuple[int, int]], List[float]]: | |
"""Row-wise cosine similarity with optional top-k and score threshold filtering. | |
Args: | |
X: Matrix. | |
Y: Matrix, same width as X. | |
top_k: Max number of results to return. | |
score_threshold: Minimum cosine similarity of results. | |
Returns: | |
Tuple of two lists. First contains two-tuples of indices (X_idx, Y_idx), | |
second contains corresponding cosine similarities. | |
""" | |
if len(X) == 0 or len(Y) == 0: | |
return [], [] | |
score_array = cosine_similarity(X, Y) | |
score_threshold = score_threshold or -1.0 | |
score_array[score_array < score_threshold] = 0 | |
top_k = min(top_k or len(score_array), np.count_nonzero(score_array)) | |
top_k_idxs = np.argpartition(score_array, -top_k, axis=None)[-top_k:] | |
top_k_idxs = top_k_idxs[np.argsort(score_array.ravel()[top_k_idxs])][::-1] | |
ret_idxs = np.unravel_index(top_k_idxs, score_array.shape) | |
scores = score_array.ravel()[top_k_idxs].tolist() | |
return list(zip(*ret_idxs)), scores # type: ignore | |