Spaces:
Runtime error
Runtime error
import json | |
from typing import Any, Dict, List, Mapping, Optional | |
from langchain_core._api.deprecation import deprecated | |
from langchain_core.callbacks import CallbackManagerForLLMRun | |
from langchain_core.language_models.llms import LLM | |
from langchain_core.pydantic_v1 import Extra, root_validator | |
from langchain_core.utils import get_from_dict_or_env | |
from langchain_community.llms.utils import enforce_stop_tokens | |
# key: task | |
# value: key in the output dictionary | |
VALID_TASKS_DICT = { | |
"translation": "translation_text", | |
"summarization": "summary_text", | |
"conversational": "generated_text", | |
"text-generation": "generated_text", | |
"text2text-generation": "generated_text", | |
} | |
class HuggingFaceHub(LLM): | |
"""HuggingFaceHub models. | |
! This class is deprecated, you should use HuggingFaceEndpoint instead. | |
To use, you should have the ``huggingface_hub`` python package installed, and the | |
environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass | |
it as a named parameter to the constructor. | |
Supports `text-generation`, `text2text-generation`, `conversational`, `translation`, | |
and `summarization`. | |
Example: | |
.. code-block:: python | |
from langchain_community.llms import HuggingFaceHub | |
hf = HuggingFaceHub(repo_id="gpt2", huggingfacehub_api_token="my-api-key") | |
""" | |
client: Any #: :meta private: | |
repo_id: Optional[str] = None | |
"""Model name to use. | |
If not provided, the default model for the chosen task will be used.""" | |
task: Optional[str] = None | |
"""Task to call the model with. | |
Should be a task that returns `generated_text`, `summary_text`, | |
or `translation_text`.""" | |
model_kwargs: Optional[dict] = None | |
"""Keyword arguments to pass to the model.""" | |
huggingfacehub_api_token: Optional[str] = None | |
class Config: | |
"""Configuration for this pydantic object.""" | |
extra = Extra.forbid | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that api key and python package exists in environment.""" | |
huggingfacehub_api_token = get_from_dict_or_env( | |
values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN" | |
) | |
try: | |
from huggingface_hub import HfApi, InferenceClient | |
repo_id = values["repo_id"] | |
client = InferenceClient( | |
model=repo_id, | |
token=huggingfacehub_api_token, | |
) | |
if not values["task"]: | |
if not repo_id: | |
raise ValueError( | |
"Must specify either `repo_id` or `task`, or both." | |
) | |
# Use the recommended task for the chosen model | |
model_info = HfApi(token=huggingfacehub_api_token).model_info( | |
repo_id=repo_id | |
) | |
values["task"] = model_info.pipeline_tag | |
if values["task"] not in VALID_TASKS_DICT: | |
raise ValueError( | |
f"Got invalid task {values['task']}, " | |
f"currently only {VALID_TASKS_DICT.keys()} are supported" | |
) | |
values["client"] = client | |
except ImportError: | |
raise ImportError( | |
"Could not import huggingface_hub python package. " | |
"Please install it with `pip install huggingface_hub`." | |
) | |
return values | |
def _identifying_params(self) -> Mapping[str, Any]: | |
"""Get the identifying parameters.""" | |
_model_kwargs = self.model_kwargs or {} | |
return { | |
**{"repo_id": self.repo_id, "task": self.task}, | |
**{"model_kwargs": _model_kwargs}, | |
} | |
def _llm_type(self) -> str: | |
"""Return type of llm.""" | |
return "huggingface_hub" | |
def _call( | |
self, | |
prompt: str, | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> str: | |
"""Call out to HuggingFace Hub's inference endpoint. | |
Args: | |
prompt: The prompt to pass into the model. | |
stop: Optional list of stop words to use when generating. | |
Returns: | |
The string generated by the model. | |
Example: | |
.. code-block:: python | |
response = hf("Tell me a joke.") | |
""" | |
_model_kwargs = self.model_kwargs or {} | |
parameters = {**_model_kwargs, **kwargs} | |
response = self.client.post( | |
json={"inputs": prompt, "parameters": parameters}, task=self.task | |
) | |
response = json.loads(response.decode()) | |
if "error" in response: | |
raise ValueError(f"Error raised by inference API: {response['error']}") | |
response_key = VALID_TASKS_DICT[self.task] # type: ignore | |
if isinstance(response, list): | |
text = response[0][response_key] | |
else: | |
text = response[response_key] | |
if stop is not None: | |
# This is a bit hacky, but I can't figure out a better way to enforce | |
# stop tokens when making calls to huggingface_hub. | |
text = enforce_stop_tokens(text, stop) | |
return text | |