Spaces:
Runtime error
Runtime error
import logging | |
from typing import Any, Dict, List, Mapping, Optional, cast | |
import requests | |
from langchain_core.callbacks import CallbackManagerForLLMRun | |
from langchain_core.language_models.llms import LLM | |
from langchain_core.pydantic_v1 import Extra, Field, SecretStr, root_validator | |
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env | |
from langchain_community.llms.utils import enforce_stop_tokens | |
logger = logging.getLogger(__name__) | |
class CerebriumAI(LLM): | |
"""CerebriumAI large language models. | |
To use, you should have the ``cerebrium`` python package installed. | |
You should also have the environment variable ``CEREBRIUMAI_API_KEY`` | |
set with your API key or pass it as a named argument in the constructor. | |
Any parameters that are valid to be passed to the call can be passed | |
in, even if not explicitly saved on this class. | |
Example: | |
.. code-block:: python | |
from langchain_community.llms import CerebriumAI | |
cerebrium = CerebriumAI(endpoint_url="", cerebriumai_api_key="my-api-key") | |
""" | |
endpoint_url: str = "" | |
"""model endpoint to use""" | |
model_kwargs: Dict[str, Any] = Field(default_factory=dict) | |
"""Holds any model parameters valid for `create` call not | |
explicitly specified.""" | |
cerebriumai_api_key: Optional[SecretStr] = None | |
class Config: | |
"""Configuration for this pydantic config.""" | |
extra = Extra.forbid | |
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: | |
"""Build extra kwargs from additional params that were passed in.""" | |
all_required_field_names = {field.alias for field in cls.__fields__.values()} | |
extra = values.get("model_kwargs", {}) | |
for field_name in list(values): | |
if field_name not in all_required_field_names: | |
if field_name in extra: | |
raise ValueError(f"Found {field_name} supplied twice.") | |
logger.warning( | |
f"""{field_name} was transferred to model_kwargs. | |
Please confirm that {field_name} is what you intended.""" | |
) | |
extra[field_name] = values.pop(field_name) | |
values["model_kwargs"] = extra | |
return values | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that api key and python package exists in environment.""" | |
cerebriumai_api_key = convert_to_secret_str( | |
get_from_dict_or_env(values, "cerebriumai_api_key", "CEREBRIUMAI_API_KEY") | |
) | |
values["cerebriumai_api_key"] = cerebriumai_api_key | |
return values | |
def _identifying_params(self) -> Mapping[str, Any]: | |
"""Get the identifying parameters.""" | |
return { | |
**{"endpoint_url": self.endpoint_url}, | |
**{"model_kwargs": self.model_kwargs}, | |
} | |
def _llm_type(self) -> str: | |
"""Return type of llm.""" | |
return "cerebriumai" | |
def _call( | |
self, | |
prompt: str, | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> str: | |
headers: Dict = { | |
"Authorization": cast( | |
SecretStr, self.cerebriumai_api_key | |
).get_secret_value(), | |
"Content-Type": "application/json", | |
} | |
params = self.model_kwargs or {} | |
payload = {"prompt": prompt, **params, **kwargs} | |
response = requests.post(self.endpoint_url, json=payload, headers=headers) | |
if response.status_code == 200: | |
data = response.json() | |
text = data["result"] | |
if stop is not None: | |
# I believe this is required since the stop tokens | |
# are not enforced by the model parameters | |
text = enforce_stop_tokens(text, stop) | |
return text | |
else: | |
response.raise_for_status() | |
return "" | |