Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
import logging | |
from typing import Any, Callable, Dict, List, Optional | |
import requests | |
from langchain_core.embeddings import Embeddings | |
from langchain_core.pydantic_v1 import BaseModel, Extra, SecretStr, root_validator | |
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env | |
from tenacity import ( | |
before_sleep_log, | |
retry, | |
stop_after_attempt, | |
wait_exponential, | |
) | |
logger = logging.getLogger(__name__) | |
def _create_retry_decorator() -> Callable[[Any], Any]: | |
"""Returns a tenacity retry decorator.""" | |
multiplier = 1 | |
min_seconds = 1 | |
max_seconds = 4 | |
max_retries = 6 | |
return retry( | |
reraise=True, | |
stop=stop_after_attempt(max_retries), | |
wait=wait_exponential(multiplier=multiplier, min=min_seconds, max=max_seconds), | |
before_sleep=before_sleep_log(logger, logging.WARNING), | |
) | |
def embed_with_retry(embeddings: MiniMaxEmbeddings, *args: Any, **kwargs: Any) -> Any: | |
"""Use tenacity to retry the completion call.""" | |
retry_decorator = _create_retry_decorator() | |
def _embed_with_retry(*args: Any, **kwargs: Any) -> Any: | |
return embeddings.embed(*args, **kwargs) | |
return _embed_with_retry(*args, **kwargs) | |
class MiniMaxEmbeddings(BaseModel, Embeddings): | |
"""MiniMax's embedding service. | |
To use, you should have the environment variable ``MINIMAX_GROUP_ID`` and | |
``MINIMAX_API_KEY`` set with your API token, or pass it as a named parameter to | |
the constructor. | |
Example: | |
.. code-block:: python | |
from langchain_community.embeddings import MiniMaxEmbeddings | |
embeddings = MiniMaxEmbeddings() | |
query_text = "This is a test query." | |
query_result = embeddings.embed_query(query_text) | |
document_text = "This is a test document." | |
document_result = embeddings.embed_documents([document_text]) | |
""" | |
endpoint_url: str = "https://api.minimax.chat/v1/embeddings" | |
"""Endpoint URL to use.""" | |
model: str = "embo-01" | |
"""Embeddings model name to use.""" | |
embed_type_db: str = "db" | |
"""For embed_documents""" | |
embed_type_query: str = "query" | |
"""For embed_query""" | |
minimax_group_id: Optional[str] = None | |
"""Group ID for MiniMax API.""" | |
minimax_api_key: Optional[SecretStr] = None | |
"""API Key for MiniMax API.""" | |
class Config: | |
"""Configuration for this pydantic object.""" | |
extra = Extra.forbid | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that group id and api key exists in environment.""" | |
minimax_group_id = get_from_dict_or_env( | |
values, "minimax_group_id", "MINIMAX_GROUP_ID" | |
) | |
minimax_api_key = convert_to_secret_str( | |
get_from_dict_or_env(values, "minimax_api_key", "MINIMAX_API_KEY") | |
) | |
values["minimax_group_id"] = minimax_group_id | |
values["minimax_api_key"] = minimax_api_key | |
return values | |
def embed( | |
self, | |
texts: List[str], | |
embed_type: str, | |
) -> List[List[float]]: | |
payload = { | |
"model": self.model, | |
"type": embed_type, | |
"texts": texts, | |
} | |
# HTTP headers for authorization | |
headers = { | |
"Authorization": f"Bearer {self.minimax_api_key.get_secret_value()}", # type: ignore[union-attr] | |
"Content-Type": "application/json", | |
} | |
params = { | |
"GroupId": self.minimax_group_id, | |
} | |
# send request | |
response = requests.post( | |
self.endpoint_url, params=params, headers=headers, json=payload | |
) | |
parsed_response = response.json() | |
# check for errors | |
if parsed_response["base_resp"]["status_code"] != 0: | |
raise ValueError( | |
f"MiniMax API returned an error: {parsed_response['base_resp']}" | |
) | |
embeddings = parsed_response["vectors"] | |
return embeddings | |
def embed_documents(self, texts: List[str]) -> List[List[float]]: | |
"""Embed documents using a MiniMax embedding endpoint. | |
Args: | |
texts: The list of texts to embed. | |
Returns: | |
List of embeddings, one for each text. | |
""" | |
embeddings = embed_with_retry(self, texts=texts, embed_type=self.embed_type_db) | |
return embeddings | |
def embed_query(self, text: str) -> List[float]: | |
"""Embed a query using a MiniMax embedding endpoint. | |
Args: | |
text: The text to embed. | |
Returns: | |
Embeddings for the text. | |
""" | |
embeddings = embed_with_retry( | |
self, texts=[text], embed_type=self.embed_type_query | |
) | |
return embeddings[0] | |