Spaces:
Runtime error
Runtime error
langchain-qa-bot
/
docs
/langchain
/libs
/partners
/huggingface
/langchain_huggingface
/embeddings
/huggingface.py
from typing import Any, Dict, List, Optional | |
from langchain_core.embeddings import Embeddings | |
from langchain_core.pydantic_v1 import BaseModel, Extra, Field | |
DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2" | |
class HuggingFaceEmbeddings(BaseModel, Embeddings): | |
"""HuggingFace sentence_transformers embedding models. | |
To use, you should have the ``sentence_transformers`` python package installed. | |
Example: | |
.. code-block:: python | |
from langchain_huggingface import HuggingFaceEmbeddings | |
model_name = "sentence-transformers/all-mpnet-base-v2" | |
model_kwargs = {'device': 'cpu'} | |
encode_kwargs = {'normalize_embeddings': False} | |
hf = HuggingFaceEmbeddings( | |
model_name=model_name, | |
model_kwargs=model_kwargs, | |
encode_kwargs=encode_kwargs | |
) | |
""" | |
client: Any #: :meta private: | |
model_name: str = DEFAULT_MODEL_NAME | |
"""Model name to use.""" | |
cache_folder: Optional[str] = None | |
"""Path to store models. | |
Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable.""" | |
model_kwargs: Dict[str, Any] = Field(default_factory=dict) | |
"""Keyword arguments to pass to the Sentence Transformer model, such as `device`, | |
`prompts`, `default_prompt_name`, `revision`, `trust_remote_code`, or `token`. | |
See also the Sentence Transformer documentation: https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer""" | |
encode_kwargs: Dict[str, Any] = Field(default_factory=dict) | |
"""Keyword arguments to pass when calling the `encode` method of the Sentence | |
Transformer model, such as `prompt_name`, `prompt`, `batch_size`, `precision`, | |
`normalize_embeddings`, and more. | |
See also the Sentence Transformer documentation: https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer.encode""" | |
multi_process: bool = False | |
"""Run encode() on multiple GPUs.""" | |
show_progress: bool = False | |
"""Whether to show a progress bar.""" | |
def __init__(self, **kwargs: Any): | |
"""Initialize the sentence_transformer.""" | |
super().__init__(**kwargs) | |
try: | |
import sentence_transformers # type: ignore[import] | |
except ImportError as exc: | |
raise ImportError( | |
"Could not import sentence_transformers python package. " | |
"Please install it with `pip install sentence-transformers`." | |
) from exc | |
self.client = sentence_transformers.SentenceTransformer( | |
self.model_name, cache_folder=self.cache_folder, **self.model_kwargs | |
) | |
class Config: | |
"""Configuration for this pydantic object.""" | |
extra = Extra.forbid | |
def embed_documents(self, texts: List[str]) -> List[List[float]]: | |
"""Compute doc embeddings using a HuggingFace transformer model. | |
Args: | |
texts: The list of texts to embed. | |
Returns: | |
List of embeddings, one for each text. | |
""" | |
import sentence_transformers # type: ignore[import] | |
texts = list(map(lambda x: x.replace("\n", " "), texts)) | |
if self.multi_process: | |
pool = self.client.start_multi_process_pool() | |
embeddings = self.client.encode_multi_process(texts, pool) | |
sentence_transformers.SentenceTransformer.stop_multi_process_pool(pool) | |
else: | |
embeddings = self.client.encode( | |
texts, show_progress_bar=self.show_progress, **self.encode_kwargs | |
) | |
return embeddings.tolist() | |
def embed_query(self, text: str) -> List[float]: | |
"""Compute query embeddings using a HuggingFace transformer model. | |
Args: | |
text: The text to embed. | |
Returns: | |
Embeddings for the text. | |
""" | |
return self.embed_documents([text])[0] | |