Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
import json | |
import logging | |
from typing import Any, Dict, List, Optional | |
import requests | |
from langchain_core.callbacks import CallbackManagerForLLMRun | |
from langchain_core.language_models.llms import LLM | |
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator | |
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env | |
from langchain_community.llms.utils import enforce_stop_tokens | |
logger = logging.getLogger(__name__) | |
class BaichuanLLM(LLM): | |
# TODO: Adding streaming support. | |
"""Baichuan large language models.""" | |
model: str = "Baichuan2-Turbo-192k" | |
""" | |
Other models are available at https://platform.baichuan-ai.com/docs/api. | |
""" | |
temperature: float = 0.3 | |
top_p: float = 0.95 | |
timeout: int = 60 | |
model_kwargs: Dict[str, Any] = Field(default_factory=dict) | |
baichuan_api_host: Optional[str] = None | |
baichuan_api_key: Optional[SecretStr] = None | |
def validate_environment(cls, values: Dict) -> Dict: | |
values["baichuan_api_key"] = convert_to_secret_str( | |
get_from_dict_or_env(values, "baichuan_api_key", "BAICHUAN_API_KEY") | |
) | |
values["baichuan_api_host"] = get_from_dict_or_env( | |
values, | |
"baichuan_api_host", | |
"BAICHUAN_API_HOST", | |
default="https://api.baichuan-ai.com/v1/chat/completions", | |
) | |
return values | |
def _default_params(self) -> Dict[str, Any]: | |
return { | |
"model": self.model, | |
"temperature": self.temperature, | |
"top_p": self.top_p, | |
**self.model_kwargs, | |
} | |
def _post(self, request: Any) -> Any: | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {self.baichuan_api_key.get_secret_value()}", # type: ignore[union-attr] | |
} | |
try: | |
response = requests.post( | |
self.baichuan_api_host, # type: ignore[arg-type] | |
headers=headers, | |
json=request, | |
timeout=self.timeout, | |
) | |
if response.status_code == 200: | |
parsed_json = json.loads(response.text) | |
return parsed_json["choices"][0]["message"]["content"] | |
else: | |
response.raise_for_status() | |
except Exception as e: | |
raise ValueError(f"An error has occurred: {e}") | |
def _call( | |
self, | |
prompt: str, | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> str: | |
request = self._default_params | |
request["messages"] = [{"role": "user", "content": prompt}] | |
request.update(kwargs) | |
text = self._post(request) | |
if stop is not None: | |
text = enforce_stop_tokens(text, stop) | |
return text | |
def _llm_type(self) -> str: | |
"""Return type of chat_model.""" | |
return "baichuan-llm" | |