Spaces:
Runtime error
Runtime error
langchain-qa-bot
/
docs
/langchain
/libs
/community
/langchain_community
/embeddings
/azure_openai.py
"""Azure OpenAI embeddings wrapper.""" | |
from __future__ import annotations | |
import os | |
import warnings | |
from typing import Callable, Dict, Optional, Union | |
from langchain_core._api.deprecation import deprecated | |
from langchain_core.pydantic_v1 import Field, root_validator | |
from langchain_core.utils import get_from_dict_or_env | |
from langchain_community.embeddings.openai import OpenAIEmbeddings | |
from langchain_community.utils.openai import is_openai_v1 | |
class AzureOpenAIEmbeddings(OpenAIEmbeddings): | |
"""`Azure OpenAI` Embeddings API.""" | |
azure_endpoint: Union[str, None] = None | |
"""Your Azure endpoint, including the resource. | |
Automatically inferred from env var `AZURE_OPENAI_ENDPOINT` if not provided. | |
Example: `https://example-resource.azure.openai.com/` | |
""" | |
deployment: Optional[str] = Field(default=None, alias="azure_deployment") | |
"""A model deployment. | |
If given sets the base client URL to include `/deployments/{azure_deployment}`. | |
Note: this means you won't be able to use non-deployment endpoints. | |
""" | |
openai_api_key: Union[str, None] = Field(default=None, alias="api_key") | |
"""Automatically inferred from env var `AZURE_OPENAI_API_KEY` if not provided.""" | |
azure_ad_token: Union[str, None] = None | |
"""Your Azure Active Directory token. | |
Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided. | |
For more: | |
https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id. | |
""" | |
azure_ad_token_provider: Union[Callable[[], str], None] = None | |
"""A function that returns an Azure Active Directory token. | |
Will be invoked on every request. | |
""" | |
openai_api_version: Optional[str] = Field(default=None, alias="api_version") | |
"""Automatically inferred from env var `OPENAI_API_VERSION` if not provided.""" | |
validate_base_url: bool = True | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that api key and python package exists in environment.""" | |
# Check OPENAI_KEY for backwards compatibility. | |
# TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using | |
# other forms of azure credentials. | |
values["openai_api_key"] = ( | |
values["openai_api_key"] | |
or os.getenv("AZURE_OPENAI_API_KEY") | |
or os.getenv("OPENAI_API_KEY") | |
) | |
values["openai_api_base"] = values["openai_api_base"] or os.getenv( | |
"OPENAI_API_BASE" | |
) | |
values["openai_api_version"] = values["openai_api_version"] or os.getenv( | |
"OPENAI_API_VERSION", default="2023-05-15" | |
) | |
values["openai_api_type"] = get_from_dict_or_env( | |
values, "openai_api_type", "OPENAI_API_TYPE", default="azure" | |
) | |
values["openai_organization"] = ( | |
values["openai_organization"] | |
or os.getenv("OPENAI_ORG_ID") | |
or os.getenv("OPENAI_ORGANIZATION") | |
) | |
values["openai_proxy"] = get_from_dict_or_env( | |
values, | |
"openai_proxy", | |
"OPENAI_PROXY", | |
default="", | |
) | |
values["azure_endpoint"] = values["azure_endpoint"] or os.getenv( | |
"AZURE_OPENAI_ENDPOINT" | |
) | |
values["azure_ad_token"] = values["azure_ad_token"] or os.getenv( | |
"AZURE_OPENAI_AD_TOKEN" | |
) | |
# Azure OpenAI embedding models allow a maximum of 16 texts | |
# at a time in each batch | |
# See: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#embeddings | |
values["chunk_size"] = min(values["chunk_size"], 16) | |
try: | |
import openai | |
except ImportError: | |
raise ImportError( | |
"Could not import openai python package. " | |
"Please install it with `pip install openai`." | |
) | |
if is_openai_v1(): | |
# For backwards compatibility. Before openai v1, no distinction was made | |
# between azure_endpoint and base_url (openai_api_base). | |
openai_api_base = values["openai_api_base"] | |
if openai_api_base and values["validate_base_url"]: | |
if "/openai" not in openai_api_base: | |
values["openai_api_base"] += "/openai" | |
warnings.warn( | |
"As of openai>=1.0.0, Azure endpoints should be specified via " | |
f"the `azure_endpoint` param not `openai_api_base` " | |
f"(or alias `base_url`). Updating `openai_api_base` from " | |
f"{openai_api_base} to {values['openai_api_base']}." | |
) | |
if values["deployment"]: | |
warnings.warn( | |
"As of openai>=1.0.0, if `deployment` (or alias " | |
"`azure_deployment`) is specified then " | |
"`openai_api_base` (or alias `base_url`) should not be. " | |
"Instead use `deployment` (or alias `azure_deployment`) " | |
"and `azure_endpoint`." | |
) | |
if values["deployment"] not in values["openai_api_base"]: | |
warnings.warn( | |
"As of openai>=1.0.0, if `openai_api_base` " | |
"(or alias `base_url`) is specified it is expected to be " | |
"of the form " | |
"https://example-resource.azure.openai.com/openai/deployments/example-deployment. " # noqa: E501 | |
f"Updating {openai_api_base} to " | |
f"{values['openai_api_base']}." | |
) | |
values["openai_api_base"] += ( | |
"/deployments/" + values["deployment"] | |
) | |
values["deployment"] = None | |
client_params = { | |
"api_version": values["openai_api_version"], | |
"azure_endpoint": values["azure_endpoint"], | |
"azure_deployment": values["deployment"], | |
"api_key": values["openai_api_key"], | |
"azure_ad_token": values["azure_ad_token"], | |
"azure_ad_token_provider": values["azure_ad_token_provider"], | |
"organization": values["openai_organization"], | |
"base_url": values["openai_api_base"], | |
"timeout": values["request_timeout"], | |
"max_retries": values["max_retries"], | |
"default_headers": values["default_headers"], | |
"default_query": values["default_query"], | |
"http_client": values["http_client"], | |
} | |
values["client"] = openai.AzureOpenAI(**client_params).embeddings | |
values["async_client"] = openai.AsyncAzureOpenAI(**client_params).embeddings | |
else: | |
values["client"] = openai.Embedding | |
return values | |
def _llm_type(self) -> str: | |
return "azure-openai-chat" | |