Spaces:
Runtime error
Runtime error
langchain-qa-bot
/
docs
/langchain
/libs
/community
/langchain_community
/chat_models
/perplexity.py
"""Wrapper around Perplexity APIs.""" | |
from __future__ import annotations | |
import logging | |
from typing import ( | |
Any, | |
Dict, | |
Iterator, | |
List, | |
Mapping, | |
Optional, | |
Tuple, | |
Type, | |
Union, | |
) | |
from langchain_core.callbacks import CallbackManagerForLLMRun | |
from langchain_core.language_models.chat_models import ( | |
BaseChatModel, | |
generate_from_stream, | |
) | |
from langchain_core.messages import ( | |
AIMessage, | |
AIMessageChunk, | |
BaseMessage, | |
BaseMessageChunk, | |
ChatMessage, | |
ChatMessageChunk, | |
FunctionMessageChunk, | |
HumanMessage, | |
HumanMessageChunk, | |
SystemMessage, | |
SystemMessageChunk, | |
ToolMessageChunk, | |
) | |
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult | |
from langchain_core.pydantic_v1 import Field, root_validator | |
from langchain_core.utils import get_from_dict_or_env, get_pydantic_field_names | |
logger = logging.getLogger(__name__) | |
class ChatPerplexity(BaseChatModel): | |
"""`Perplexity AI` Chat models API. | |
To use, you should have the ``openai`` python package installed, and the | |
environment variable ``PPLX_API_KEY`` set to your API key. | |
Any parameters that are valid to be passed to the openai.create call can be passed | |
in, even if not explicitly saved on this class. | |
Example: | |
.. code-block:: python | |
from langchain_community.chat_models import ChatPerplexity | |
chat = ChatPerplexity(model="pplx-70b-online", temperature=0.7) | |
""" | |
client: Any #: :meta private: | |
model: str = "pplx-70b-online" | |
"""Model name.""" | |
temperature: float = 0.7 | |
"""What sampling temperature to use.""" | |
model_kwargs: Dict[str, Any] = Field(default_factory=dict) | |
"""Holds any model parameters valid for `create` call not explicitly specified.""" | |
pplx_api_key: Optional[str] = Field(None, alias="api_key") | |
"""Base URL path for API requests, | |
leave blank if not using a proxy or service emulator.""" | |
request_timeout: Optional[Union[float, Tuple[float, float]]] = Field( | |
None, alias="timeout" | |
) | |
"""Timeout for requests to PerplexityChat completion API. Default is 600 seconds.""" | |
max_retries: int = 6 | |
"""Maximum number of retries to make when generating.""" | |
streaming: bool = False | |
"""Whether to stream the results or not.""" | |
max_tokens: Optional[int] = None | |
"""Maximum number of tokens to generate.""" | |
class Config: | |
"""Configuration for this pydantic object.""" | |
allow_population_by_field_name = True | |
def lc_secrets(self) -> Dict[str, str]: | |
return {"pplx_api_key": "PPLX_API_KEY"} | |
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: | |
"""Build extra kwargs from additional params that were passed in.""" | |
all_required_field_names = get_pydantic_field_names(cls) | |
extra = values.get("model_kwargs", {}) | |
for field_name in list(values): | |
if field_name in extra: | |
raise ValueError(f"Found {field_name} supplied twice.") | |
if field_name not in all_required_field_names: | |
logger.warning( | |
f"""WARNING! {field_name} is not a default parameter. | |
{field_name} was transferred to model_kwargs. | |
Please confirm that {field_name} is what you intended.""" | |
) | |
extra[field_name] = values.pop(field_name) | |
invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) | |
if invalid_model_kwargs: | |
raise ValueError( | |
f"Parameters {invalid_model_kwargs} should be specified explicitly. " | |
f"Instead they were passed in as part of `model_kwargs` parameter." | |
) | |
values["model_kwargs"] = extra | |
return values | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that api key and python package exists in environment.""" | |
values["pplx_api_key"] = get_from_dict_or_env( | |
values, "pplx_api_key", "PPLX_API_KEY" | |
) | |
try: | |
import openai | |
except ImportError: | |
raise ImportError( | |
"Could not import openai python package. " | |
"Please install it with `pip install openai`." | |
) | |
try: | |
values["client"] = openai.OpenAI( | |
api_key=values["pplx_api_key"], base_url="https://api.perplexity.ai" | |
) | |
except AttributeError: | |
raise ValueError( | |
"`openai` has no `ChatCompletion` attribute, this is likely " | |
"due to an old version of the openai package. Try upgrading it " | |
"with `pip install --upgrade openai`." | |
) | |
return values | |
def _default_params(self) -> Dict[str, Any]: | |
"""Get the default parameters for calling PerplexityChat API.""" | |
return { | |
"request_timeout": self.request_timeout, | |
"max_tokens": self.max_tokens, | |
"stream": self.streaming, | |
"temperature": self.temperature, | |
**self.model_kwargs, | |
} | |
def _convert_message_to_dict(self, message: BaseMessage) -> Dict[str, Any]: | |
if isinstance(message, ChatMessage): | |
message_dict = {"role": message.role, "content": message.content} | |
elif isinstance(message, SystemMessage): | |
message_dict = {"role": "system", "content": message.content} | |
elif isinstance(message, HumanMessage): | |
message_dict = {"role": "user", "content": message.content} | |
elif isinstance(message, AIMessage): | |
message_dict = {"role": "assistant", "content": message.content} | |
else: | |
raise TypeError(f"Got unknown type {message}") | |
return message_dict | |
def _create_message_dicts( | |
self, messages: List[BaseMessage], stop: Optional[List[str]] | |
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: | |
params = dict(self._invocation_params) | |
if stop is not None: | |
if "stop" in params: | |
raise ValueError("`stop` found in both the input and default params.") | |
params["stop"] = stop | |
message_dicts = [self._convert_message_to_dict(m) for m in messages] | |
return message_dicts, params | |
def _convert_delta_to_message_chunk( | |
self, _dict: Mapping[str, Any], default_class: Type[BaseMessageChunk] | |
) -> BaseMessageChunk: | |
role = _dict.get("role") | |
content = _dict.get("content") or "" | |
additional_kwargs: Dict = {} | |
if _dict.get("function_call"): | |
function_call = dict(_dict["function_call"]) | |
if "name" in function_call and function_call["name"] is None: | |
function_call["name"] = "" | |
additional_kwargs["function_call"] = function_call | |
if _dict.get("tool_calls"): | |
additional_kwargs["tool_calls"] = _dict["tool_calls"] | |
if role == "user" or default_class == HumanMessageChunk: | |
return HumanMessageChunk(content=content) | |
elif role == "assistant" or default_class == AIMessageChunk: | |
return AIMessageChunk(content=content, additional_kwargs=additional_kwargs) | |
elif role == "system" or default_class == SystemMessageChunk: | |
return SystemMessageChunk(content=content) | |
elif role == "function" or default_class == FunctionMessageChunk: | |
return FunctionMessageChunk(content=content, name=_dict["name"]) | |
elif role == "tool" or default_class == ToolMessageChunk: | |
return ToolMessageChunk(content=content, tool_call_id=_dict["tool_call_id"]) | |
elif role or default_class == ChatMessageChunk: | |
return ChatMessageChunk(content=content, role=role) # type: ignore[arg-type] | |
else: | |
return default_class(content=content) # type: ignore[call-arg] | |
def _stream( | |
self, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> Iterator[ChatGenerationChunk]: | |
message_dicts, params = self._create_message_dicts(messages, stop) | |
params = {**params, **kwargs} | |
default_chunk_class = AIMessageChunk | |
if stop: | |
params["stop_sequences"] = stop | |
stream_resp = self.client.chat.completions.create( | |
model=params["model"], messages=message_dicts, stream=True | |
) | |
for chunk in stream_resp: | |
if not isinstance(chunk, dict): | |
chunk = chunk.dict() | |
if len(chunk["choices"]) == 0: | |
continue | |
choice = chunk["choices"][0] | |
chunk = self._convert_delta_to_message_chunk( | |
choice["delta"], default_chunk_class | |
) | |
finish_reason = choice.get("finish_reason") | |
generation_info = ( | |
dict(finish_reason=finish_reason) if finish_reason is not None else None | |
) | |
default_chunk_class = chunk.__class__ | |
chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info) | |
if run_manager: | |
run_manager.on_llm_new_token(chunk.text, chunk=chunk) | |
yield chunk | |
def _generate( | |
self, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> ChatResult: | |
if self.streaming: | |
stream_iter = self._stream( | |
messages, stop=stop, run_manager=run_manager, **kwargs | |
) | |
if stream_iter: | |
return generate_from_stream(stream_iter) | |
message_dicts, params = self._create_message_dicts(messages, stop) | |
params = {**params, **kwargs} | |
response = self.client.chat.completions.create( | |
model=params["model"], messages=message_dicts | |
) | |
message = AIMessage(content=response.choices[0].message.content) | |
return ChatResult(generations=[ChatGeneration(message=message)]) | |
def _invocation_params(self) -> Mapping[str, Any]: | |
"""Get the parameters used to invoke the model.""" | |
pplx_creds: Dict[str, Any] = { | |
"api_key": self.pplx_api_key, | |
"api_base": "https://api.perplexity.ai", | |
"model": self.model, | |
} | |
return {**pplx_creds, **self._default_params} | |
def _llm_type(self) -> str: | |
"""Return type of chat model.""" | |
return "perplexitychat" | |