Spaces:
Runtime error
Runtime error
"""JinaChat wrapper.""" | |
from __future__ import annotations | |
import logging | |
from typing import ( | |
Any, | |
AsyncIterator, | |
Callable, | |
Dict, | |
Iterator, | |
List, | |
Mapping, | |
Optional, | |
Tuple, | |
Type, | |
Union, | |
) | |
from langchain_core.callbacks import ( | |
AsyncCallbackManagerForLLMRun, | |
CallbackManagerForLLMRun, | |
) | |
from langchain_core.language_models.chat_models import ( | |
BaseChatModel, | |
agenerate_from_stream, | |
generate_from_stream, | |
) | |
from langchain_core.messages import ( | |
AIMessage, | |
AIMessageChunk, | |
BaseMessage, | |
BaseMessageChunk, | |
ChatMessage, | |
ChatMessageChunk, | |
FunctionMessage, | |
HumanMessage, | |
HumanMessageChunk, | |
SystemMessage, | |
SystemMessageChunk, | |
) | |
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult | |
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator | |
from langchain_core.utils import ( | |
convert_to_secret_str, | |
get_from_dict_or_env, | |
get_pydantic_field_names, | |
) | |
from tenacity import ( | |
before_sleep_log, | |
retry, | |
retry_if_exception_type, | |
stop_after_attempt, | |
wait_exponential, | |
) | |
logger = logging.getLogger(__name__) | |
def _create_retry_decorator(llm: JinaChat) -> Callable[[Any], Any]: | |
import openai | |
min_seconds = 1 | |
max_seconds = 60 | |
# Wait 2^x * 1 second between each retry starting with | |
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards | |
return retry( | |
reraise=True, | |
stop=stop_after_attempt(llm.max_retries), | |
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), | |
retry=( | |
retry_if_exception_type(openai.error.Timeout) | |
| retry_if_exception_type(openai.error.APIError) | |
| retry_if_exception_type(openai.error.APIConnectionError) | |
| retry_if_exception_type(openai.error.RateLimitError) | |
| retry_if_exception_type(openai.error.ServiceUnavailableError) | |
), | |
before_sleep=before_sleep_log(logger, logging.WARNING), | |
) | |
async def acompletion_with_retry(llm: JinaChat, **kwargs: Any) -> Any: | |
"""Use tenacity to retry the async completion call.""" | |
retry_decorator = _create_retry_decorator(llm) | |
async def _completion_with_retry(**kwargs: Any) -> Any: | |
# Use OpenAI's async api https://github.com/openai/openai-python#async-api | |
return await llm.client.acreate(**kwargs) | |
return await _completion_with_retry(**kwargs) | |
def _convert_delta_to_message_chunk( | |
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk] | |
) -> BaseMessageChunk: | |
role = _dict.get("role") | |
content = _dict.get("content") or "" | |
if role == "user" or default_class == HumanMessageChunk: | |
return HumanMessageChunk(content=content) | |
elif role == "assistant" or default_class == AIMessageChunk: | |
return AIMessageChunk(content=content) | |
elif role == "system" or default_class == SystemMessageChunk: | |
return SystemMessageChunk(content=content) | |
elif role or default_class == ChatMessageChunk: | |
return ChatMessageChunk(content=content, role=role) # type: ignore[arg-type] | |
else: | |
return default_class(content=content) # type: ignore[call-arg] | |
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage: | |
role = _dict["role"] | |
if role == "user": | |
return HumanMessage(content=_dict["content"]) | |
elif role == "assistant": | |
content = _dict["content"] or "" | |
return AIMessage(content=content) | |
elif role == "system": | |
return SystemMessage(content=_dict["content"]) | |
else: | |
return ChatMessage(content=_dict["content"], role=role) | |
def _convert_message_to_dict(message: BaseMessage) -> dict: | |
if isinstance(message, ChatMessage): | |
message_dict = {"role": message.role, "content": message.content} | |
elif isinstance(message, HumanMessage): | |
message_dict = {"role": "user", "content": message.content} | |
elif isinstance(message, AIMessage): | |
message_dict = {"role": "assistant", "content": message.content} | |
elif isinstance(message, SystemMessage): | |
message_dict = {"role": "system", "content": message.content} | |
elif isinstance(message, FunctionMessage): | |
message_dict = { | |
"role": "function", | |
"name": message.name, | |
"content": message.content, | |
} | |
else: | |
raise ValueError(f"Got unknown type {message}") | |
if "name" in message.additional_kwargs: | |
message_dict["name"] = message.additional_kwargs["name"] | |
return message_dict | |
class JinaChat(BaseChatModel): | |
"""`Jina AI` Chat models API. | |
To use, you should have the ``openai`` python package installed, and the | |
environment variable ``JINACHAT_API_KEY`` set to your API key, which you | |
can generate at https://chat.jina.ai/api. | |
Any parameters that are valid to be passed to the openai.create call can be passed | |
in, even if not explicitly saved on this class. | |
Example: | |
.. code-block:: python | |
from langchain_community.chat_models import JinaChat | |
chat = JinaChat() | |
""" | |
def lc_secrets(self) -> Dict[str, str]: | |
return {"jinachat_api_key": "JINACHAT_API_KEY"} | |
def is_lc_serializable(cls) -> bool: | |
"""Return whether this model can be serialized by Langchain.""" | |
return False | |
client: Any #: :meta private: | |
temperature: float = 0.7 | |
"""What sampling temperature to use.""" | |
model_kwargs: Dict[str, Any] = Field(default_factory=dict) | |
"""Holds any model parameters valid for `create` call not explicitly specified.""" | |
jinachat_api_key: Optional[SecretStr] = None | |
"""Base URL path for API requests, | |
leave blank if not using a proxy or service emulator.""" | |
request_timeout: Optional[Union[float, Tuple[float, float]]] = None | |
"""Timeout for requests to JinaChat completion API. Default is 600 seconds.""" | |
max_retries: int = 6 | |
"""Maximum number of retries to make when generating.""" | |
streaming: bool = False | |
"""Whether to stream the results or not.""" | |
max_tokens: Optional[int] = None | |
"""Maximum number of tokens to generate.""" | |
class Config: | |
"""Configuration for this pydantic object.""" | |
allow_population_by_field_name = True | |
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: | |
"""Build extra kwargs from additional params that were passed in.""" | |
all_required_field_names = get_pydantic_field_names(cls) | |
extra = values.get("model_kwargs", {}) | |
for field_name in list(values): | |
if field_name in extra: | |
raise ValueError(f"Found {field_name} supplied twice.") | |
if field_name not in all_required_field_names: | |
logger.warning( | |
f"""WARNING! {field_name} is not default parameter. | |
{field_name} was transferred to model_kwargs. | |
Please confirm that {field_name} is what you intended.""" | |
) | |
extra[field_name] = values.pop(field_name) | |
invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) | |
if invalid_model_kwargs: | |
raise ValueError( | |
f"Parameters {invalid_model_kwargs} should be specified explicitly. " | |
f"Instead they were passed in as part of `model_kwargs` parameter." | |
) | |
values["model_kwargs"] = extra | |
return values | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that api key and python package exists in environment.""" | |
values["jinachat_api_key"] = convert_to_secret_str( | |
get_from_dict_or_env(values, "jinachat_api_key", "JINACHAT_API_KEY") | |
) | |
try: | |
import openai | |
except ImportError: | |
raise ImportError( | |
"Could not import openai python package. " | |
"Please install it with `pip install openai`." | |
) | |
try: | |
values["client"] = openai.ChatCompletion | |
except AttributeError: | |
raise ValueError( | |
"`openai` has no `ChatCompletion` attribute, this is likely " | |
"due to an old version of the openai package. Try upgrading it " | |
"with `pip install --upgrade openai`." | |
) | |
return values | |
def _default_params(self) -> Dict[str, Any]: | |
"""Get the default parameters for calling JinaChat API.""" | |
return { | |
"request_timeout": self.request_timeout, | |
"max_tokens": self.max_tokens, | |
"stream": self.streaming, | |
"temperature": self.temperature, | |
**self.model_kwargs, | |
} | |
def _create_retry_decorator(self) -> Callable[[Any], Any]: | |
import openai | |
min_seconds = 1 | |
max_seconds = 60 | |
# Wait 2^x * 1 second between each retry starting with | |
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards | |
return retry( | |
reraise=True, | |
stop=stop_after_attempt(self.max_retries), | |
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), | |
retry=( | |
retry_if_exception_type(openai.error.Timeout) | |
| retry_if_exception_type(openai.error.APIError) | |
| retry_if_exception_type(openai.error.APIConnectionError) | |
| retry_if_exception_type(openai.error.RateLimitError) | |
| retry_if_exception_type(openai.error.ServiceUnavailableError) | |
), | |
before_sleep=before_sleep_log(logger, logging.WARNING), | |
) | |
def completion_with_retry(self, **kwargs: Any) -> Any: | |
"""Use tenacity to retry the completion call.""" | |
retry_decorator = self._create_retry_decorator() | |
def _completion_with_retry(**kwargs: Any) -> Any: | |
return self.client.create(**kwargs) | |
return _completion_with_retry(**kwargs) | |
def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict: | |
overall_token_usage: dict = {} | |
for output in llm_outputs: | |
if output is None: | |
# Happens in streaming | |
continue | |
token_usage = output["token_usage"] | |
for k, v in token_usage.items(): | |
if k in overall_token_usage: | |
overall_token_usage[k] += v | |
else: | |
overall_token_usage[k] = v | |
return {"token_usage": overall_token_usage} | |
def _stream( | |
self, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> Iterator[ChatGenerationChunk]: | |
message_dicts, params = self._create_message_dicts(messages, stop) | |
params = {**params, **kwargs, "stream": True} | |
default_chunk_class = AIMessageChunk | |
for chunk in self.completion_with_retry(messages=message_dicts, **params): | |
delta = chunk["choices"][0]["delta"] | |
chunk = _convert_delta_to_message_chunk(delta, default_chunk_class) | |
default_chunk_class = chunk.__class__ | |
cg_chunk = ChatGenerationChunk(message=chunk) | |
if run_manager: | |
run_manager.on_llm_new_token(chunk.content, chunk=cg_chunk) | |
yield cg_chunk | |
def _generate( | |
self, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> ChatResult: | |
if self.streaming: | |
stream_iter = self._stream( | |
messages=messages, stop=stop, run_manager=run_manager, **kwargs | |
) | |
return generate_from_stream(stream_iter) | |
message_dicts, params = self._create_message_dicts(messages, stop) | |
params = {**params, **kwargs} | |
response = self.completion_with_retry(messages=message_dicts, **params) | |
return self._create_chat_result(response) | |
def _create_message_dicts( | |
self, messages: List[BaseMessage], stop: Optional[List[str]] | |
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: | |
params = dict(self._invocation_params) | |
if stop is not None: | |
if "stop" in params: | |
raise ValueError("`stop` found in both the input and default params.") | |
params["stop"] = stop | |
message_dicts = [_convert_message_to_dict(m) for m in messages] | |
return message_dicts, params | |
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult: | |
generations = [] | |
for res in response["choices"]: | |
message = _convert_dict_to_message(res["message"]) | |
gen = ChatGeneration(message=message) | |
generations.append(gen) | |
llm_output = {"token_usage": response["usage"]} | |
return ChatResult(generations=generations, llm_output=llm_output) | |
async def _astream( | |
self, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> AsyncIterator[ChatGenerationChunk]: | |
message_dicts, params = self._create_message_dicts(messages, stop) | |
params = {**params, **kwargs, "stream": True} | |
default_chunk_class = AIMessageChunk | |
async for chunk in await acompletion_with_retry( | |
self, messages=message_dicts, **params | |
): | |
delta = chunk["choices"][0]["delta"] | |
chunk = _convert_delta_to_message_chunk(delta, default_chunk_class) | |
default_chunk_class = chunk.__class__ | |
cg_chunk = ChatGenerationChunk(message=chunk) | |
if run_manager: | |
await run_manager.on_llm_new_token(chunk.content, chunk=cg_chunk) | |
yield cg_chunk | |
async def _agenerate( | |
self, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> ChatResult: | |
if self.streaming: | |
stream_iter = self._astream( | |
messages=messages, stop=stop, run_manager=run_manager, **kwargs | |
) | |
return await agenerate_from_stream(stream_iter) | |
message_dicts, params = self._create_message_dicts(messages, stop) | |
params = {**params, **kwargs} | |
response = await acompletion_with_retry(self, messages=message_dicts, **params) | |
return self._create_chat_result(response) | |
def _invocation_params(self) -> Mapping[str, Any]: | |
"""Get the parameters used to invoke the model.""" | |
jinachat_creds: Dict[str, Any] = { | |
"api_key": self.jinachat_api_key | |
and self.jinachat_api_key.get_secret_value(), | |
"api_base": "https://api.chat.jina.ai/v1", | |
"model": "jinachat", | |
} | |
return {**jinachat_creds, **self._default_params} | |
def _llm_type(self) -> str: | |
"""Return type of chat model.""" | |
return "jinachat" | |