Spaces:
Runtime error
Runtime error
import json | |
import logging | |
from typing import Any, Dict, Iterator, List, Mapping, Optional, Type | |
import requests | |
from langchain_core.callbacks import CallbackManagerForLLMRun | |
from langchain_core.language_models.chat_models import ( | |
BaseChatModel, | |
generate_from_stream, | |
) | |
from langchain_core.messages import ( | |
AIMessage, | |
AIMessageChunk, | |
BaseMessage, | |
BaseMessageChunk, | |
ChatMessage, | |
ChatMessageChunk, | |
HumanMessage, | |
HumanMessageChunk, | |
) | |
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult | |
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator | |
from langchain_core.utils import ( | |
convert_to_secret_str, | |
get_from_dict_or_env, | |
get_pydantic_field_names, | |
) | |
logger = logging.getLogger(__name__) | |
DEFAULT_API_BASE = "https://api.baichuan-ai.com/v1/chat/completions" | |
def _convert_message_to_dict(message: BaseMessage) -> dict: | |
message_dict: Dict[str, Any] | |
if isinstance(message, ChatMessage): | |
message_dict = {"role": message.role, "content": message.content} | |
elif isinstance(message, HumanMessage): | |
message_dict = {"role": "user", "content": message.content} | |
elif isinstance(message, AIMessage): | |
message_dict = {"role": "assistant", "content": message.content} | |
else: | |
raise TypeError(f"Got unknown type {message}") | |
return message_dict | |
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage: | |
role = _dict["role"] | |
if role == "user": | |
return HumanMessage(content=_dict["content"]) | |
elif role == "assistant": | |
return AIMessage(content=_dict.get("content", "") or "") | |
else: | |
return ChatMessage(content=_dict["content"], role=role) | |
def _convert_delta_to_message_chunk( | |
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk] | |
) -> BaseMessageChunk: | |
role = _dict.get("role") | |
content = _dict.get("content") or "" | |
if role == "user" or default_class == HumanMessageChunk: | |
return HumanMessageChunk(content=content) | |
elif role == "assistant" or default_class == AIMessageChunk: | |
return AIMessageChunk(content=content) | |
elif role or default_class == ChatMessageChunk: | |
return ChatMessageChunk(content=content, role=role) # type: ignore[arg-type] | |
else: | |
return default_class(content=content) # type: ignore[call-arg] | |
class ChatBaichuan(BaseChatModel): | |
"""Baichuan chat models API by Baichuan Intelligent Technology. | |
For more information, see https://platform.baichuan-ai.com/docs/api | |
""" | |
def lc_secrets(self) -> Dict[str, str]: | |
return { | |
"baichuan_api_key": "BAICHUAN_API_KEY", | |
} | |
def lc_serializable(self) -> bool: | |
return True | |
baichuan_api_base: str = Field(default=DEFAULT_API_BASE) | |
"""Baichuan custom endpoints""" | |
baichuan_api_key: Optional[SecretStr] = Field(default=None, alias="api_key") | |
"""Baichuan API Key""" | |
baichuan_secret_key: Optional[SecretStr] = None | |
"""[DEPRECATED, keeping it for for backward compatibility] Baichuan Secret Key""" | |
streaming: bool = False | |
"""Whether to stream the results or not.""" | |
request_timeout: int = Field(default=60, alias="timeout") | |
"""request timeout for chat http requests""" | |
model = "Baichuan2-Turbo-192K" | |
"""model name of Baichuan, default is `Baichuan2-Turbo-192K`, | |
other options include `Baichuan2-Turbo`""" | |
temperature: Optional[float] = Field(default=0.3) | |
"""What sampling temperature to use.""" | |
top_k: int = 5 | |
"""What search sampling control to use.""" | |
top_p: float = 0.85 | |
"""What probability mass to use.""" | |
with_search_enhance: bool = False | |
"""Whether to use search enhance, default is False.""" | |
model_kwargs: Dict[str, Any] = Field(default_factory=dict) | |
"""Holds any model parameters valid for API call not explicitly specified.""" | |
class Config: | |
"""Configuration for this pydantic object.""" | |
allow_population_by_field_name = True | |
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: | |
"""Build extra kwargs from additional params that were passed in.""" | |
all_required_field_names = get_pydantic_field_names(cls) | |
extra = values.get("model_kwargs", {}) | |
for field_name in list(values): | |
if field_name in extra: | |
raise ValueError(f"Found {field_name} supplied twice.") | |
if field_name not in all_required_field_names: | |
logger.warning( | |
f"""WARNING! {field_name} is not default parameter. | |
{field_name} was transferred to model_kwargs. | |
Please confirm that {field_name} is what you intended.""" | |
) | |
extra[field_name] = values.pop(field_name) | |
invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) | |
if invalid_model_kwargs: | |
raise ValueError( | |
f"Parameters {invalid_model_kwargs} should be specified explicitly. " | |
f"Instead they were passed in as part of `model_kwargs` parameter." | |
) | |
values["model_kwargs"] = extra | |
return values | |
def validate_environment(cls, values: Dict) -> Dict: | |
values["baichuan_api_base"] = get_from_dict_or_env( | |
values, | |
"baichuan_api_base", | |
"BAICHUAN_API_BASE", | |
DEFAULT_API_BASE, | |
) | |
values["baichuan_api_key"] = convert_to_secret_str( | |
get_from_dict_or_env( | |
values, | |
"baichuan_api_key", | |
"BAICHUAN_API_KEY", | |
) | |
) | |
return values | |
def _default_params(self) -> Dict[str, Any]: | |
"""Get the default parameters for calling Baichuan API.""" | |
normal_params = { | |
"model": self.model, | |
"temperature": self.temperature, | |
"top_p": self.top_p, | |
"top_k": self.top_k, | |
"with_search_enhance": self.with_search_enhance, | |
"stream": self.streaming, | |
} | |
return {**normal_params, **self.model_kwargs} | |
def _generate( | |
self, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> ChatResult: | |
if self.streaming: | |
stream_iter = self._stream( | |
messages=messages, stop=stop, run_manager=run_manager, **kwargs | |
) | |
return generate_from_stream(stream_iter) | |
res = self._chat(messages, **kwargs) | |
if res.status_code != 200: | |
raise ValueError(f"Error from Baichuan api response: {res}") | |
response = res.json() | |
return self._create_chat_result(response) | |
def _stream( | |
self, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> Iterator[ChatGenerationChunk]: | |
res = self._chat(messages, **kwargs) | |
if res.status_code != 200: | |
raise ValueError(f"Error from Baichuan api response: {res}") | |
default_chunk_class = AIMessageChunk | |
for chunk in res.iter_lines(): | |
chunk = chunk.decode("utf-8").strip("\r\n") | |
parts = chunk.split("data: ", 1) | |
chunk = parts[1] if len(parts) > 1 else None | |
if chunk is None: | |
continue | |
if chunk == "[DONE]": | |
break | |
response = json.loads(chunk) | |
for m in response.get("choices"): | |
chunk = _convert_delta_to_message_chunk( | |
m.get("delta"), default_chunk_class | |
) | |
default_chunk_class = chunk.__class__ | |
cg_chunk = ChatGenerationChunk(message=chunk) | |
if run_manager: | |
run_manager.on_llm_new_token(chunk.content, chunk=cg_chunk) | |
yield cg_chunk | |
def _chat(self, messages: List[BaseMessage], **kwargs: Any) -> requests.Response: | |
parameters = {**self._default_params, **kwargs} | |
model = parameters.pop("model") | |
headers = parameters.pop("headers", {}) | |
temperature = parameters.pop("temperature", 0.3) | |
top_k = parameters.pop("top_k", 5) | |
top_p = parameters.pop("top_p", 0.85) | |
with_search_enhance = parameters.pop("with_search_enhance", False) | |
stream = parameters.pop("stream", False) | |
payload = { | |
"model": model, | |
"messages": [_convert_message_to_dict(m) for m in messages], | |
"top_k": top_k, | |
"top_p": top_p, | |
"temperature": temperature, | |
"with_search_enhance": with_search_enhance, | |
"stream": stream, | |
} | |
url = self.baichuan_api_base | |
api_key = "" | |
if self.baichuan_api_key: | |
api_key = self.baichuan_api_key.get_secret_value() | |
res = requests.post( | |
url=url, | |
timeout=self.request_timeout, | |
headers={ | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {api_key}", | |
**headers, | |
}, | |
json=payload, | |
stream=self.streaming, | |
) | |
return res | |
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult: | |
generations = [] | |
for c in response["choices"]: | |
message = _convert_dict_to_message(c["message"]) | |
gen = ChatGeneration(message=message) | |
generations.append(gen) | |
token_usage = response["usage"] | |
llm_output = {"token_usage": token_usage, "model": self.model} | |
return ChatResult(generations=generations, llm_output=llm_output) | |
def _llm_type(self) -> str: | |
return "baichuan-chat" | |