Spaces:
Runtime error
Runtime error
import logging | |
from typing import Any, Dict, List, Optional, Union | |
logger = logging.getLogger(__name__) | |
class DriaAPIWrapper: | |
"""Wrapper around Dria API. | |
This wrapper facilitates interactions with Dria's vector search | |
and retrieval services, including creating knowledge bases, inserting data, | |
and fetching search results. | |
Attributes: | |
api_key: Your API key for accessing Dria. | |
contract_id: The contract ID of the knowledge base to interact with. | |
top_n: Number of top results to fetch for a search. | |
""" | |
def __init__( | |
self, api_key: str, contract_id: Optional[str] = None, top_n: int = 10 | |
): | |
try: | |
from dria import Dria, Models | |
except ImportError: | |
logger.error( | |
"""Dria is not installed. Please install Dria to use this wrapper. | |
You can install Dria using the following command: | |
pip install dria | |
""" | |
) | |
return | |
self.api_key = api_key | |
self.models = Models | |
self.contract_id = contract_id | |
self.top_n = top_n | |
self.dria_client = Dria(api_key=self.api_key) | |
if self.contract_id: | |
self.dria_client.set_contract(self.contract_id) | |
def create_knowledge_base( | |
self, | |
name: str, | |
description: str, | |
category: str, | |
embedding: str, | |
) -> str: | |
"""Create a new knowledge base.""" | |
contract_id = self.dria_client.create( | |
name=name, embedding=embedding, category=category, description=description | |
) | |
logger.info(f"Knowledge base created with ID: {contract_id}") | |
self.contract_id = contract_id | |
return contract_id | |
def insert_data(self, data: List[Dict[str, Any]]) -> str: | |
"""Insert data into the knowledge base.""" | |
response = self.dria_client.insert_text(data) | |
logger.info(f"Data inserted: {response}") | |
return response | |
def search(self, query: str) -> List[Dict[str, Any]]: | |
"""Perform a text-based search.""" | |
results = self.dria_client.search(query, top_n=self.top_n) | |
logger.info(f"Search results: {results}") | |
return results | |
def query_with_vector(self, vector: List[float]) -> List[Dict[str, Any]]: | |
"""Perform a vector-based query.""" | |
vector_query_results = self.dria_client.query(vector, top_n=self.top_n) | |
logger.info(f"Vector query results: {vector_query_results}") | |
return vector_query_results | |
def run(self, query: Union[str, List[float]]) -> Optional[List[Dict[str, Any]]]: | |
"""Method to handle both text-based searches and vector-based queries. | |
Args: | |
query: A string for text-based search or a list of floats for | |
vector-based query. | |
Returns: | |
The search or query results from Dria. | |
""" | |
if isinstance(query, str): | |
return self.search(query) | |
elif isinstance(query, list) and all(isinstance(item, float) for item in query): | |
return self.query_with_vector(query) | |
else: | |
logger.error( | |
"""Invalid query type. Please provide a string for text search or a | |
list of floats for vector query.""" | |
) | |
return None | |