Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
import pickle | |
from pathlib import Path | |
from typing import Any, Dict, Iterable, List, Optional | |
from langchain_core.callbacks import CallbackManagerForRetrieverRun | |
from langchain_core.documents import Document | |
from langchain_core.retrievers import BaseRetriever | |
class TFIDFRetriever(BaseRetriever): | |
"""`TF-IDF` retriever. | |
Largely based on | |
https://github.com/asvskartheek/Text-Retrieval/blob/master/TF-IDF%20Search%20Engine%20(SKLEARN).ipynb | |
""" | |
vectorizer: Any | |
"""TF-IDF vectorizer.""" | |
docs: List[Document] | |
"""Documents.""" | |
tfidf_array: Any | |
"""TF-IDF array.""" | |
k: int = 4 | |
"""Number of documents to return.""" | |
class Config: | |
"""Configuration for this pydantic object.""" | |
arbitrary_types_allowed = True | |
def from_texts( | |
cls, | |
texts: Iterable[str], | |
metadatas: Optional[Iterable[dict]] = None, | |
tfidf_params: Optional[Dict[str, Any]] = None, | |
**kwargs: Any, | |
) -> TFIDFRetriever: | |
try: | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
except ImportError: | |
raise ImportError( | |
"Could not import scikit-learn, please install with `pip install " | |
"scikit-learn`." | |
) | |
tfidf_params = tfidf_params or {} | |
vectorizer = TfidfVectorizer(**tfidf_params) | |
tfidf_array = vectorizer.fit_transform(texts) | |
metadatas = metadatas or ({} for _ in texts) | |
docs = [Document(page_content=t, metadata=m) for t, m in zip(texts, metadatas)] | |
return cls(vectorizer=vectorizer, docs=docs, tfidf_array=tfidf_array, **kwargs) | |
def from_documents( | |
cls, | |
documents: Iterable[Document], | |
*, | |
tfidf_params: Optional[Dict[str, Any]] = None, | |
**kwargs: Any, | |
) -> TFIDFRetriever: | |
texts, metadatas = zip(*((d.page_content, d.metadata) for d in documents)) | |
return cls.from_texts( | |
texts=texts, tfidf_params=tfidf_params, metadatas=metadatas, **kwargs | |
) | |
def _get_relevant_documents( | |
self, query: str, *, run_manager: CallbackManagerForRetrieverRun | |
) -> List[Document]: | |
from sklearn.metrics.pairwise import cosine_similarity | |
query_vec = self.vectorizer.transform( | |
[query] | |
) # Ip -- (n_docs,x), Op -- (n_docs,n_Feats) | |
results = cosine_similarity(self.tfidf_array, query_vec).reshape( | |
(-1,) | |
) # Op -- (n_docs,1) -- Cosine Sim with each doc | |
return_docs = [self.docs[i] for i in results.argsort()[-self.k :][::-1]] | |
return return_docs | |
def save_local( | |
self, | |
folder_path: str, | |
file_name: str = "tfidf_vectorizer", | |
) -> None: | |
try: | |
import joblib | |
except ImportError: | |
raise ImportError( | |
"Could not import joblib, please install with `pip install joblib`." | |
) | |
path = Path(folder_path) | |
path.mkdir(exist_ok=True, parents=True) | |
# Save vectorizer with joblib dump. | |
joblib.dump(self.vectorizer, path / f"{file_name}.joblib") | |
# Save docs and tfidf array as pickle. | |
with open(path / f"{file_name}.pkl", "wb") as f: | |
pickle.dump((self.docs, self.tfidf_array), f) | |
def load_local( | |
cls, | |
folder_path: str, | |
*, | |
allow_dangerous_deserialization: bool = False, | |
file_name: str = "tfidf_vectorizer", | |
) -> TFIDFRetriever: | |
"""Load the retriever from local storage. | |
Args: | |
folder_path: Folder path to load from. | |
allow_dangerous_deserialization: Whether to allow dangerous deserialization. | |
Defaults to False. | |
The deserialization relies on .joblib and .pkl files, which can be | |
modified to deliver a malicious payload that results in execution of | |
arbitrary code on your machine. You will need to set this to `True` to | |
use deserialization. If you do this, make sure you trust the source of | |
the file. | |
file_name: File name to load from. Defaults to "tfidf_vectorizer". | |
Returns: | |
TFIDFRetriever: Loaded retriever. | |
""" | |
try: | |
import joblib | |
except ImportError: | |
raise ImportError( | |
"Could not import joblib, please install with `pip install joblib`." | |
) | |
if not allow_dangerous_deserialization: | |
raise ValueError( | |
"The de-serialization of this retriever is based on .joblib and " | |
".pkl files." | |
"Such files can be modified to deliver a malicious payload that " | |
"results in execution of arbitrary code on your machine." | |
"You will need to set `allow_dangerous_deserialization` to `True` to " | |
"load this retriever. If you do this, make sure you trust the source " | |
"of the file, and you are responsible for validating the file " | |
"came from a trusted source." | |
) | |
path = Path(folder_path) | |
# Load vectorizer with joblib load. | |
vectorizer = joblib.load(path / f"{file_name}.joblib") | |
# Load docs and tfidf array as pickle. | |
with open(path / f"{file_name}.pkl", "rb") as f: | |
docs, tfidf_array = pickle.load(f) | |
return cls(vectorizer=vectorizer, docs=docs, tfidf_array=tfidf_array) | |