Spaces:
Runtime error
Runtime error
from typing import Any, Dict, List, Type, Union | |
from langchain_core.language_models import BaseLanguageModel | |
from langchain_core.messages import BaseMessage, SystemMessage, get_buffer_string | |
from langchain_core.prompts import BasePromptTemplate | |
from langchain_core.pydantic_v1 import Field | |
from langchain_community.graphs import NetworkxEntityGraph | |
from langchain_community.graphs.networkx_graph import ( | |
KnowledgeTriple, | |
get_entities, | |
parse_triples, | |
) | |
try: | |
from langchain.chains.llm import LLMChain | |
from langchain.memory.chat_memory import BaseChatMemory | |
from langchain.memory.prompt import ( | |
ENTITY_EXTRACTION_PROMPT, | |
KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT, | |
) | |
from langchain.memory.utils import get_prompt_input_key | |
class ConversationKGMemory(BaseChatMemory): | |
"""Knowledge graph conversation memory. | |
Integrates with external knowledge graph to store and retrieve | |
information about knowledge triples in the conversation. | |
""" | |
k: int = 2 | |
human_prefix: str = "Human" | |
ai_prefix: str = "AI" | |
kg: NetworkxEntityGraph = Field(default_factory=NetworkxEntityGraph) | |
knowledge_extraction_prompt: BasePromptTemplate = ( | |
KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT | |
) | |
entity_extraction_prompt: BasePromptTemplate = ENTITY_EXTRACTION_PROMPT | |
llm: BaseLanguageModel | |
summary_message_cls: Type[BaseMessage] = SystemMessage | |
"""Number of previous utterances to include in the context.""" | |
memory_key: str = "history" #: :meta private: | |
def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: | |
"""Return history buffer.""" | |
entities = self._get_current_entities(inputs) | |
summary_strings = [] | |
for entity in entities: | |
knowledge = self.kg.get_entity_knowledge(entity) | |
if knowledge: | |
summary = f"On {entity}: {'. '.join(knowledge)}." | |
summary_strings.append(summary) | |
context: Union[str, List] | |
if not summary_strings: | |
context = [] if self.return_messages else "" | |
elif self.return_messages: | |
context = [ | |
self.summary_message_cls(content=text) for text in summary_strings | |
] | |
else: | |
context = "\n".join(summary_strings) | |
return {self.memory_key: context} | |
def memory_variables(self) -> List[str]: | |
"""Will always return list of memory variables. | |
:meta private: | |
""" | |
return [self.memory_key] | |
def _get_prompt_input_key(self, inputs: Dict[str, Any]) -> str: | |
"""Get the input key for the prompt.""" | |
if self.input_key is None: | |
return get_prompt_input_key(inputs, self.memory_variables) | |
return self.input_key | |
def _get_prompt_output_key(self, outputs: Dict[str, Any]) -> str: | |
"""Get the output key for the prompt.""" | |
if self.output_key is None: | |
if len(outputs) != 1: | |
raise ValueError(f"One output key expected, got {outputs.keys()}") | |
return list(outputs.keys())[0] | |
return self.output_key | |
def get_current_entities(self, input_string: str) -> List[str]: | |
chain = LLMChain(llm=self.llm, prompt=self.entity_extraction_prompt) | |
buffer_string = get_buffer_string( | |
self.chat_memory.messages[-self.k * 2 :], | |
human_prefix=self.human_prefix, | |
ai_prefix=self.ai_prefix, | |
) | |
output = chain.predict( | |
history=buffer_string, | |
input=input_string, | |
) | |
return get_entities(output) | |
def _get_current_entities(self, inputs: Dict[str, Any]) -> List[str]: | |
"""Get the current entities in the conversation.""" | |
prompt_input_key = self._get_prompt_input_key(inputs) | |
return self.get_current_entities(inputs[prompt_input_key]) | |
def get_knowledge_triplets(self, input_string: str) -> List[KnowledgeTriple]: | |
chain = LLMChain(llm=self.llm, prompt=self.knowledge_extraction_prompt) | |
buffer_string = get_buffer_string( | |
self.chat_memory.messages[-self.k * 2 :], | |
human_prefix=self.human_prefix, | |
ai_prefix=self.ai_prefix, | |
) | |
output = chain.predict( | |
history=buffer_string, | |
input=input_string, | |
verbose=True, | |
) | |
knowledge = parse_triples(output) | |
return knowledge | |
def _get_and_update_kg(self, inputs: Dict[str, Any]) -> None: | |
"""Get and update knowledge graph from the conversation history.""" | |
prompt_input_key = self._get_prompt_input_key(inputs) | |
knowledge = self.get_knowledge_triplets(inputs[prompt_input_key]) | |
for triple in knowledge: | |
self.kg.add_triple(triple) | |
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: | |
"""Save context from this conversation to buffer.""" | |
super().save_context(inputs, outputs) | |
self._get_and_update_kg(inputs) | |
def clear(self) -> None: | |
"""Clear memory contents.""" | |
super().clear() | |
self.kg.clear() | |
except ImportError: | |
# Placeholder object | |
class ConversationKGMemory: # type: ignore[no-redef] | |
pass | |