Spaces:
Runtime error
Runtime error
"""Wrapper around LiteLLM's model I/O library.""" | |
from __future__ import annotations | |
import logging | |
from typing import ( | |
Any, | |
AsyncIterator, | |
Callable, | |
Dict, | |
Iterator, | |
List, | |
Mapping, | |
Optional, | |
Tuple, | |
Type, | |
Union, | |
) | |
from langchain_core.callbacks import ( | |
AsyncCallbackManagerForLLMRun, | |
CallbackManagerForLLMRun, | |
) | |
from langchain_core.language_models.chat_models import ( | |
BaseChatModel, | |
agenerate_from_stream, | |
generate_from_stream, | |
) | |
from langchain_core.language_models.llms import create_base_retry_decorator | |
from langchain_core.messages import ( | |
AIMessage, | |
AIMessageChunk, | |
BaseMessage, | |
BaseMessageChunk, | |
ChatMessage, | |
ChatMessageChunk, | |
FunctionMessage, | |
FunctionMessageChunk, | |
HumanMessage, | |
HumanMessageChunk, | |
SystemMessage, | |
SystemMessageChunk, | |
) | |
from langchain_core.outputs import ( | |
ChatGeneration, | |
ChatGenerationChunk, | |
ChatResult, | |
) | |
from langchain_core.pydantic_v1 import Field, root_validator | |
from langchain_core.utils import get_from_dict_or_env | |
logger = logging.getLogger(__name__) | |
class ChatLiteLLMException(Exception): | |
"""Error with the `LiteLLM I/O` library""" | |
def _create_retry_decorator( | |
llm: ChatLiteLLM, | |
run_manager: Optional[ | |
Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun] | |
] = None, | |
) -> Callable[[Any], Any]: | |
"""Returns a tenacity retry decorator, preconfigured to handle PaLM exceptions""" | |
import litellm | |
errors = [ | |
litellm.Timeout, | |
litellm.APIError, | |
litellm.APIConnectionError, | |
litellm.RateLimitError, | |
] | |
return create_base_retry_decorator( | |
error_types=errors, max_retries=llm.max_retries, run_manager=run_manager | |
) | |
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage: | |
role = _dict["role"] | |
if role == "user": | |
return HumanMessage(content=_dict["content"]) | |
elif role == "assistant": | |
# Fix for azure | |
# Also OpenAI returns None for tool invocations | |
content = _dict.get("content", "") or "" | |
if _dict.get("function_call"): | |
additional_kwargs = {"function_call": dict(_dict["function_call"])} | |
else: | |
additional_kwargs = {} | |
return AIMessage(content=content, additional_kwargs=additional_kwargs) | |
elif role == "system": | |
return SystemMessage(content=_dict["content"]) | |
elif role == "function": | |
return FunctionMessage(content=_dict["content"], name=_dict["name"]) | |
else: | |
return ChatMessage(content=_dict["content"], role=role) | |
async def acompletion_with_retry( | |
llm: ChatLiteLLM, | |
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> Any: | |
"""Use tenacity to retry the async completion call.""" | |
retry_decorator = _create_retry_decorator(llm, run_manager=run_manager) | |
async def _completion_with_retry(**kwargs: Any) -> Any: | |
# Use OpenAI's async api https://github.com/openai/openai-python#async-api | |
return await llm.client.acreate(**kwargs) | |
return await _completion_with_retry(**kwargs) | |
def _convert_delta_to_message_chunk( | |
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk] | |
) -> BaseMessageChunk: | |
role = _dict.get("role") | |
content = _dict.get("content") or "" | |
if _dict.get("function_call"): | |
additional_kwargs = {"function_call": dict(_dict["function_call"])} | |
else: | |
additional_kwargs = {} | |
if role == "user" or default_class == HumanMessageChunk: | |
return HumanMessageChunk(content=content) | |
elif role == "assistant" or default_class == AIMessageChunk: | |
return AIMessageChunk(content=content, additional_kwargs=additional_kwargs) | |
elif role == "system" or default_class == SystemMessageChunk: | |
return SystemMessageChunk(content=content) | |
elif role == "function" or default_class == FunctionMessageChunk: | |
return FunctionMessageChunk(content=content, name=_dict["name"]) | |
elif role or default_class == ChatMessageChunk: | |
return ChatMessageChunk(content=content, role=role) # type: ignore[arg-type] | |
else: | |
return default_class(content=content) # type: ignore[call-arg] | |
def _convert_message_to_dict(message: BaseMessage) -> dict: | |
if isinstance(message, ChatMessage): | |
message_dict = {"role": message.role, "content": message.content} | |
elif isinstance(message, HumanMessage): | |
message_dict = {"role": "user", "content": message.content} | |
elif isinstance(message, AIMessage): | |
message_dict = {"role": "assistant", "content": message.content} | |
if "function_call" in message.additional_kwargs: | |
message_dict["function_call"] = message.additional_kwargs["function_call"] | |
elif isinstance(message, SystemMessage): | |
message_dict = {"role": "system", "content": message.content} | |
elif isinstance(message, FunctionMessage): | |
message_dict = { | |
"role": "function", | |
"content": message.content, | |
"name": message.name, | |
} | |
else: | |
raise ValueError(f"Got unknown type {message}") | |
if "name" in message.additional_kwargs: | |
message_dict["name"] = message.additional_kwargs["name"] | |
return message_dict | |
class ChatLiteLLM(BaseChatModel): | |
"""Chat model that uses the LiteLLM API.""" | |
client: Any #: :meta private: | |
model: str = "gpt-3.5-turbo" | |
model_name: Optional[str] = None | |
"""Model name to use.""" | |
openai_api_key: Optional[str] = None | |
azure_api_key: Optional[str] = None | |
anthropic_api_key: Optional[str] = None | |
replicate_api_key: Optional[str] = None | |
cohere_api_key: Optional[str] = None | |
openrouter_api_key: Optional[str] = None | |
streaming: bool = False | |
api_base: Optional[str] = None | |
organization: Optional[str] = None | |
custom_llm_provider: Optional[str] = None | |
request_timeout: Optional[Union[float, Tuple[float, float]]] = None | |
temperature: Optional[float] = 1 | |
model_kwargs: Dict[str, Any] = Field(default_factory=dict) | |
"""Run inference with this temperature. Must by in the closed | |
interval [0.0, 1.0].""" | |
top_p: Optional[float] = None | |
"""Decode using nucleus sampling: consider the smallest set of tokens whose | |
probability sum is at least top_p. Must be in the closed interval [0.0, 1.0].""" | |
top_k: Optional[int] = None | |
"""Decode using top-k sampling: consider the set of top_k most probable tokens. | |
Must be positive.""" | |
n: int = 1 | |
"""Number of chat completions to generate for each prompt. Note that the API may | |
not return the full n completions if duplicates are generated.""" | |
max_tokens: int = 256 | |
max_retries: int = 6 | |
def _default_params(self) -> Dict[str, Any]: | |
"""Get the default parameters for calling OpenAI API.""" | |
set_model_value = self.model | |
if self.model_name is not None: | |
set_model_value = self.model_name | |
return { | |
"model": set_model_value, | |
"force_timeout": self.request_timeout, | |
"max_tokens": self.max_tokens, | |
"stream": self.streaming, | |
"n": self.n, | |
"temperature": self.temperature, | |
"custom_llm_provider": self.custom_llm_provider, | |
**self.model_kwargs, | |
} | |
def _client_params(self) -> Dict[str, Any]: | |
"""Get the parameters used for the openai client.""" | |
set_model_value = self.model | |
if self.model_name is not None: | |
set_model_value = self.model_name | |
self.client.api_base = self.api_base | |
self.client.organization = self.organization | |
creds: Dict[str, Any] = { | |
"model": set_model_value, | |
"force_timeout": self.request_timeout, | |
"api_base": self.api_base, | |
} | |
return {**self._default_params, **creds} | |
def completion_with_retry( | |
self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any | |
) -> Any: | |
"""Use tenacity to retry the completion call.""" | |
retry_decorator = _create_retry_decorator(self, run_manager=run_manager) | |
def _completion_with_retry(**kwargs: Any) -> Any: | |
return self.client.completion(**kwargs) | |
return _completion_with_retry(**kwargs) | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate api key, python package exists, temperature, top_p, and top_k.""" | |
try: | |
import litellm | |
except ImportError: | |
raise ChatLiteLLMException( | |
"Could not import litellm python package. " | |
"Please install it with `pip install litellm`" | |
) | |
values["openai_api_key"] = get_from_dict_or_env( | |
values, "openai_api_key", "OPENAI_API_KEY", default="" | |
) | |
values["azure_api_key"] = get_from_dict_or_env( | |
values, "azure_api_key", "AZURE_API_KEY", default="" | |
) | |
values["anthropic_api_key"] = get_from_dict_or_env( | |
values, "anthropic_api_key", "ANTHROPIC_API_KEY", default="" | |
) | |
values["replicate_api_key"] = get_from_dict_or_env( | |
values, "replicate_api_key", "REPLICATE_API_KEY", default="" | |
) | |
values["openrouter_api_key"] = get_from_dict_or_env( | |
values, "openrouter_api_key", "OPENROUTER_API_KEY", default="" | |
) | |
values["cohere_api_key"] = get_from_dict_or_env( | |
values, "cohere_api_key", "COHERE_API_KEY", default="" | |
) | |
values["huggingface_api_key"] = get_from_dict_or_env( | |
values, "huggingface_api_key", "HUGGINGFACE_API_KEY", default="" | |
) | |
values["together_ai_api_key"] = get_from_dict_or_env( | |
values, "together_ai_api_key", "TOGETHERAI_API_KEY", default="" | |
) | |
values["client"] = litellm | |
if values["temperature"] is not None and not 0 <= values["temperature"] <= 1: | |
raise ValueError("temperature must be in the range [0.0, 1.0]") | |
if values["top_p"] is not None and not 0 <= values["top_p"] <= 1: | |
raise ValueError("top_p must be in the range [0.0, 1.0]") | |
if values["top_k"] is not None and values["top_k"] <= 0: | |
raise ValueError("top_k must be positive") | |
return values | |
def _generate( | |
self, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
stream: Optional[bool] = None, | |
**kwargs: Any, | |
) -> ChatResult: | |
should_stream = stream if stream is not None else self.streaming | |
if should_stream: | |
stream_iter = self._stream( | |
messages, stop=stop, run_manager=run_manager, **kwargs | |
) | |
return generate_from_stream(stream_iter) | |
message_dicts, params = self._create_message_dicts(messages, stop) | |
params = {**params, **kwargs} | |
response = self.completion_with_retry( | |
messages=message_dicts, run_manager=run_manager, **params | |
) | |
return self._create_chat_result(response) | |
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult: | |
generations = [] | |
for res in response["choices"]: | |
message = _convert_dict_to_message(res["message"]) | |
gen = ChatGeneration( | |
message=message, | |
generation_info=dict(finish_reason=res.get("finish_reason")), | |
) | |
generations.append(gen) | |
token_usage = response.get("usage", {}) | |
set_model_value = self.model | |
if self.model_name is not None: | |
set_model_value = self.model_name | |
llm_output = {"token_usage": token_usage, "model": set_model_value} | |
return ChatResult(generations=generations, llm_output=llm_output) | |
def _create_message_dicts( | |
self, messages: List[BaseMessage], stop: Optional[List[str]] | |
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: | |
params = self._client_params | |
if stop is not None: | |
if "stop" in params: | |
raise ValueError("`stop` found in both the input and default params.") | |
params["stop"] = stop | |
message_dicts = [_convert_message_to_dict(m) for m in messages] | |
return message_dicts, params | |
def _stream( | |
self, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> Iterator[ChatGenerationChunk]: | |
message_dicts, params = self._create_message_dicts(messages, stop) | |
params = {**params, **kwargs, "stream": True} | |
default_chunk_class = AIMessageChunk | |
for chunk in self.completion_with_retry( | |
messages=message_dicts, run_manager=run_manager, **params | |
): | |
if len(chunk["choices"]) == 0: | |
continue | |
delta = chunk["choices"][0]["delta"] | |
chunk = _convert_delta_to_message_chunk(delta, default_chunk_class) | |
default_chunk_class = chunk.__class__ | |
cg_chunk = ChatGenerationChunk(message=chunk) | |
if run_manager: | |
run_manager.on_llm_new_token(chunk.content, chunk=cg_chunk) | |
yield cg_chunk | |
async def _astream( | |
self, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> AsyncIterator[ChatGenerationChunk]: | |
message_dicts, params = self._create_message_dicts(messages, stop) | |
params = {**params, **kwargs, "stream": True} | |
default_chunk_class = AIMessageChunk | |
async for chunk in await acompletion_with_retry( | |
self, messages=message_dicts, run_manager=run_manager, **params | |
): | |
if len(chunk["choices"]) == 0: | |
continue | |
delta = chunk["choices"][0]["delta"] | |
chunk = _convert_delta_to_message_chunk(delta, default_chunk_class) | |
default_chunk_class = chunk.__class__ | |
cg_chunk = ChatGenerationChunk(message=chunk) | |
if run_manager: | |
await run_manager.on_llm_new_token(chunk.content, chunk=cg_chunk) | |
yield cg_chunk | |
async def _agenerate( | |
self, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, | |
stream: Optional[bool] = None, | |
**kwargs: Any, | |
) -> ChatResult: | |
should_stream = stream if stream is not None else self.streaming | |
if should_stream: | |
stream_iter = self._astream( | |
messages=messages, stop=stop, run_manager=run_manager, **kwargs | |
) | |
return await agenerate_from_stream(stream_iter) | |
message_dicts, params = self._create_message_dicts(messages, stop) | |
params = {**params, **kwargs} | |
response = await acompletion_with_retry( | |
self, messages=message_dicts, run_manager=run_manager, **params | |
) | |
return self._create_chat_result(response) | |
def _identifying_params(self) -> Dict[str, Any]: | |
"""Get the identifying parameters.""" | |
set_model_value = self.model | |
if self.model_name is not None: | |
set_model_value = self.model_name | |
return { | |
"model": set_model_value, | |
"temperature": self.temperature, | |
"top_p": self.top_p, | |
"top_k": self.top_k, | |
"n": self.n, | |
} | |
def _llm_type(self) -> str: | |
return "litellm-chat" | |