Spaces:
Runtime error
Runtime error
langchain-qa-bot
/
docs
/langchain
/libs
/community
/langchain_community
/chat_models
/databricks.py
import logging | |
from urllib.parse import urlparse | |
from langchain_community.chat_models.mlflow import ChatMlflow | |
logger = logging.getLogger(__name__) | |
class ChatDatabricks(ChatMlflow): | |
"""`Databricks` chat models API. | |
To use, you should have the ``mlflow`` python package installed. | |
For more information, see https://mlflow.org/docs/latest/llms/deployments. | |
Example: | |
.. code-block:: python | |
from langchain_community.chat_models import ChatDatabricks | |
chat_model = ChatDatabricks( | |
target_uri="databricks", | |
endpoint="databricks-llama-2-70b-chat", | |
temperature=0.1, | |
) | |
# single input invocation | |
print(chat_model.invoke("What is MLflow?").content) | |
# single input invocation with streaming response | |
for chunk in chat_model.stream("What is MLflow?"): | |
print(chunk.content, end="|") | |
""" | |
target_uri: str = "databricks" | |
"""The target URI to use. Defaults to ``databricks``.""" | |
def _llm_type(self) -> str: | |
"""Return type of chat model.""" | |
return "databricks-chat" | |
def _mlflow_extras(self) -> str: | |
return "" | |
def _validate_uri(self) -> None: | |
if self.target_uri == "databricks": | |
return | |
if urlparse(self.target_uri).scheme != "databricks": | |
raise ValueError( | |
"Invalid target URI. The target URI must be a valid databricks URI." | |
) | |