Spaces:
Runtime error
Runtime error
langchain-qa-bot
/
docs
/langchain
/libs
/community
/langchain_community
/callbacks
/labelstudio_callback.py
import os | |
import warnings | |
from datetime import datetime | |
from enum import Enum | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
from uuid import UUID | |
from langchain_core.agents import AgentAction, AgentFinish | |
from langchain_core.callbacks import BaseCallbackHandler | |
from langchain_core.messages import BaseMessage, ChatMessage | |
from langchain_core.outputs import Generation, LLMResult | |
class LabelStudioMode(Enum): | |
"""Label Studio mode enumerator.""" | |
PROMPT = "prompt" | |
CHAT = "chat" | |
def get_default_label_configs( | |
mode: Union[str, LabelStudioMode], | |
) -> Tuple[str, LabelStudioMode]: | |
"""Get default Label Studio configs for the given mode. | |
Parameters: | |
mode: Label Studio mode ("prompt" or "chat") | |
Returns: Tuple of Label Studio config and mode | |
""" | |
_default_label_configs = { | |
LabelStudioMode.PROMPT.value: """ | |
<View> | |
<Style> | |
.prompt-box { | |
background-color: white; | |
border-radius: 10px; | |
box-shadow: 0px 4px 6px rgba(0, 0, 0, 0.1); | |
padding: 20px; | |
} | |
</Style> | |
<View className="root"> | |
<View className="prompt-box"> | |
<Text name="prompt" value="$prompt"/> | |
</View> | |
<TextArea name="response" toName="prompt" | |
maxSubmissions="1" editable="true" | |
required="true"/> | |
</View> | |
<Header value="Rate the response:"/> | |
<Rating name="rating" toName="prompt"/> | |
</View>""", | |
LabelStudioMode.CHAT.value: """ | |
<View> | |
<View className="root"> | |
<Paragraphs name="dialogue" | |
value="$prompt" | |
layout="dialogue" | |
textKey="content" | |
nameKey="role" | |
granularity="sentence"/> | |
<Header value="Final response:"/> | |
<TextArea name="response" toName="dialogue" | |
maxSubmissions="1" editable="true" | |
required="true"/> | |
</View> | |
<Header value="Rate the response:"/> | |
<Rating name="rating" toName="dialogue"/> | |
</View>""", | |
} | |
if isinstance(mode, str): | |
mode = LabelStudioMode(mode) | |
return _default_label_configs[mode.value], mode | |
class LabelStudioCallbackHandler(BaseCallbackHandler): | |
"""Label Studio callback handler. | |
Provides the ability to send predictions to Label Studio | |
for human evaluation, feedback and annotation. | |
Parameters: | |
api_key: Label Studio API key | |
url: Label Studio URL | |
project_id: Label Studio project ID | |
project_name: Label Studio project name | |
project_config: Label Studio project config (XML) | |
mode: Label Studio mode ("prompt" or "chat") | |
Examples: | |
>>> from langchain_community.llms import OpenAI | |
>>> from langchain_community.callbacks import LabelStudioCallbackHandler | |
>>> handler = LabelStudioCallbackHandler( | |
... api_key='<your_key_here>', | |
... url='http://localhost:8080', | |
... project_name='LangChain-%Y-%m-%d', | |
... mode='prompt' | |
... ) | |
>>> llm = OpenAI(callbacks=[handler]) | |
>>> llm.invoke('Tell me a story about a dog.') | |
""" | |
DEFAULT_PROJECT_NAME: str = "LangChain-%Y-%m-%d" | |
def __init__( | |
self, | |
api_key: Optional[str] = None, | |
url: Optional[str] = None, | |
project_id: Optional[int] = None, | |
project_name: str = DEFAULT_PROJECT_NAME, | |
project_config: Optional[str] = None, | |
mode: Union[str, LabelStudioMode] = LabelStudioMode.PROMPT, | |
): | |
super().__init__() | |
# Import LabelStudio SDK | |
try: | |
import label_studio_sdk as ls | |
except ImportError: | |
raise ImportError( | |
f"You're using {self.__class__.__name__} in your code," | |
f" but you don't have the LabelStudio SDK " | |
f"Python package installed or upgraded to the latest version. " | |
f"Please run `pip install -U label-studio-sdk`" | |
f" before using this callback." | |
) | |
# Check if Label Studio API key is provided | |
if not api_key: | |
if os.getenv("LABEL_STUDIO_API_KEY"): | |
api_key = str(os.getenv("LABEL_STUDIO_API_KEY")) | |
else: | |
raise ValueError( | |
f"You're using {self.__class__.__name__} in your code," | |
f" Label Studio API key is not provided. " | |
f"Please provide Label Studio API key: " | |
f"go to the Label Studio instance, navigate to " | |
f"Account & Settings -> Access Token and copy the key. " | |
f"Use the key as a parameter for the callback: " | |
f"{self.__class__.__name__}" | |
f"(label_studio_api_key='<your_key_here>', ...) or " | |
f"set the environment variable LABEL_STUDIO_API_KEY=<your_key_here>" | |
) | |
self.api_key = api_key | |
if not url: | |
if os.getenv("LABEL_STUDIO_URL"): | |
url = os.getenv("LABEL_STUDIO_URL") | |
else: | |
warnings.warn( | |
f"Label Studio URL is not provided, " | |
f"using default URL: {ls.LABEL_STUDIO_DEFAULT_URL}" | |
f"If you want to provide your own URL, use the parameter: " | |
f"{self.__class__.__name__}" | |
f"(label_studio_url='<your_url_here>', ...) " | |
f"or set the environment variable LABEL_STUDIO_URL=<your_url_here>" | |
) | |
url = ls.LABEL_STUDIO_DEFAULT_URL | |
self.url = url | |
# Maps run_id to prompts | |
self.payload: Dict[str, Dict] = {} | |
self.ls_client = ls.Client(url=self.url, api_key=self.api_key) | |
self.project_name = project_name | |
if project_config: | |
self.project_config = project_config | |
self.mode = None | |
else: | |
self.project_config, self.mode = get_default_label_configs(mode) | |
self.project_id = project_id or os.getenv("LABEL_STUDIO_PROJECT_ID") | |
if self.project_id is not None: | |
self.ls_project = self.ls_client.get_project(int(self.project_id)) | |
else: | |
project_title = datetime.today().strftime(self.project_name) | |
existing_projects = self.ls_client.get_projects(title=project_title) | |
if existing_projects: | |
self.ls_project = existing_projects[0] | |
self.project_id = self.ls_project.id | |
else: | |
self.ls_project = self.ls_client.create_project( | |
title=project_title, label_config=self.project_config | |
) | |
self.project_id = self.ls_project.id | |
self.parsed_label_config = self.ls_project.parsed_label_config | |
# Find the first TextArea tag | |
# "from_name", "to_name", "value" will be used to create predictions | |
self.from_name, self.to_name, self.value, self.input_type = ( | |
None, | |
None, | |
None, | |
None, | |
) | |
for tag_name, tag_info in self.parsed_label_config.items(): | |
if tag_info["type"] == "TextArea": | |
self.from_name = tag_name | |
self.to_name = tag_info["to_name"][0] | |
self.value = tag_info["inputs"][0]["value"] | |
self.input_type = tag_info["inputs"][0]["type"] | |
break | |
if not self.from_name: | |
error_message = ( | |
f'Label Studio project "{self.project_name}" ' | |
f"does not have a TextArea tag. " | |
f"Please add a TextArea tag to the project." | |
) | |
if self.mode == LabelStudioMode.PROMPT: | |
error_message += ( | |
"\nHINT: go to project Settings -> " | |
"Labeling Interface -> Browse Templates" | |
' and select "Generative AI -> ' | |
'Supervised Language Model Fine-tuning" template.' | |
) | |
else: | |
error_message += ( | |
"\nHINT: go to project Settings -> " | |
"Labeling Interface -> Browse Templates" | |
" and check available templates under " | |
'"Generative AI" section.' | |
) | |
raise ValueError(error_message) | |
def add_prompts_generations( | |
self, run_id: str, generations: List[List[Generation]] | |
) -> None: | |
# Create tasks in Label Studio | |
tasks = [] | |
prompts = self.payload[run_id]["prompts"] | |
model_version = ( | |
self.payload[run_id]["kwargs"] | |
.get("invocation_params", {}) | |
.get("model_name") | |
) | |
for prompt, generation in zip(prompts, generations): | |
tasks.append( | |
{ | |
"data": { | |
self.value: prompt, | |
"run_id": run_id, | |
}, | |
"predictions": [ | |
{ | |
"result": [ | |
{ | |
"from_name": self.from_name, | |
"to_name": self.to_name, | |
"type": "textarea", | |
"value": {"text": [g.text for g in generation]}, | |
} | |
], | |
"model_version": model_version, | |
} | |
], | |
} | |
) | |
self.ls_project.import_tasks(tasks) | |
def on_llm_start( | |
self, | |
serialized: Dict[str, Any], | |
prompts: List[str], | |
**kwargs: Any, | |
) -> None: | |
"""Save the prompts in memory when an LLM starts.""" | |
if self.input_type != "Text": | |
raise ValueError( | |
f'\nLabel Studio project "{self.project_name}" ' | |
f"has an input type <{self.input_type}>. " | |
f'To make it work with the mode="chat", ' | |
f"the input type should be <Text>.\n" | |
f"Read more here https://labelstud.io/tags/text" | |
) | |
run_id = str(kwargs["run_id"]) | |
self.payload[run_id] = {"prompts": prompts, "kwargs": kwargs} | |
def _get_message_role(self, message: BaseMessage) -> str: | |
"""Get the role of the message.""" | |
if isinstance(message, ChatMessage): | |
return message.role | |
else: | |
return message.__class__.__name__ | |
def on_chat_model_start( | |
self, | |
serialized: Dict[str, Any], | |
messages: List[List[BaseMessage]], | |
*, | |
run_id: UUID, | |
parent_run_id: Optional[UUID] = None, | |
tags: Optional[List[str]] = None, | |
metadata: Optional[Dict[str, Any]] = None, | |
**kwargs: Any, | |
) -> Any: | |
"""Save the prompts in memory when an LLM starts.""" | |
if self.input_type != "Paragraphs": | |
raise ValueError( | |
f'\nLabel Studio project "{self.project_name}" ' | |
f"has an input type <{self.input_type}>. " | |
f'To make it work with the mode="chat", ' | |
f"the input type should be <Paragraphs>.\n" | |
f"Read more here https://labelstud.io/tags/paragraphs" | |
) | |
prompts = [] | |
for message_list in messages: | |
dialog = [] | |
for message in message_list: | |
dialog.append( | |
{ | |
"role": self._get_message_role(message), | |
"content": message.content, | |
} | |
) | |
prompts.append(dialog) | |
self.payload[str(run_id)] = { | |
"prompts": prompts, | |
"tags": tags, | |
"metadata": metadata, | |
"run_id": run_id, | |
"parent_run_id": parent_run_id, | |
"kwargs": kwargs, | |
} | |
def on_llm_new_token(self, token: str, **kwargs: Any) -> None: | |
"""Do nothing when a new token is generated.""" | |
pass | |
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: | |
"""Create a new Label Studio task for each prompt and generation.""" | |
run_id = str(kwargs["run_id"]) | |
# Submit results to Label Studio | |
self.add_prompts_generations(run_id, response.generations) | |
# Pop current run from `self.runs` | |
self.payload.pop(run_id) | |
def on_llm_error(self, error: BaseException, **kwargs: Any) -> None: | |
"""Do nothing when LLM outputs an error.""" | |
pass | |
def on_chain_start( | |
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any | |
) -> None: | |
pass | |
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: | |
pass | |
def on_chain_error(self, error: BaseException, **kwargs: Any) -> None: | |
"""Do nothing when LLM chain outputs an error.""" | |
pass | |
def on_tool_start( | |
self, | |
serialized: Dict[str, Any], | |
input_str: str, | |
**kwargs: Any, | |
) -> None: | |
"""Do nothing when tool starts.""" | |
pass | |
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any: | |
"""Do nothing when agent takes a specific action.""" | |
pass | |
def on_tool_end( | |
self, | |
output: str, | |
observation_prefix: Optional[str] = None, | |
llm_prefix: Optional[str] = None, | |
**kwargs: Any, | |
) -> None: | |
"""Do nothing when tool ends.""" | |
pass | |
def on_tool_error(self, error: BaseException, **kwargs: Any) -> None: | |
"""Do nothing when tool outputs an error.""" | |
pass | |
def on_text(self, text: str, **kwargs: Any) -> None: | |
"""Do nothing""" | |
pass | |
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None: | |
"""Do nothing""" | |
pass | |