Spaces:
Runtime error
Runtime error
"""Wrapper around Minimax chat models.""" | |
import json | |
import logging | |
from contextlib import asynccontextmanager, contextmanager | |
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional, Type, Union | |
from langchain_core.callbacks import ( | |
AsyncCallbackManagerForLLMRun, | |
CallbackManagerForLLMRun, | |
) | |
from langchain_core.language_models.chat_models import ( | |
BaseChatModel, | |
agenerate_from_stream, | |
generate_from_stream, | |
) | |
from langchain_core.messages import ( | |
AIMessage, | |
AIMessageChunk, | |
BaseMessage, | |
BaseMessageChunk, | |
ChatMessage, | |
ChatMessageChunk, | |
HumanMessage, | |
SystemMessage, | |
) | |
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult | |
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator | |
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env | |
logger = logging.getLogger(__name__) | |
def connect_httpx_sse(client: Any, method: str, url: str, **kwargs: Any) -> Iterator: | |
from httpx_sse import EventSource | |
with client.stream(method, url, **kwargs) as response: | |
yield EventSource(response) | |
async def aconnect_httpx_sse( | |
client: Any, method: str, url: str, **kwargs: Any | |
) -> AsyncIterator: | |
from httpx_sse import EventSource | |
async with client.stream(method, url, **kwargs) as response: | |
yield EventSource(response) | |
def _convert_message_to_dict(message: BaseMessage) -> Dict[str, Any]: | |
"""Convert a LangChain messages to Dict.""" | |
message_dict: Dict[str, Any] | |
if isinstance(message, HumanMessage): | |
message_dict = {"role": "user", "content": message.content} | |
elif isinstance(message, AIMessage): | |
message_dict = {"role": "assistant", "content": message.content} | |
elif isinstance(message, SystemMessage): | |
message_dict = {"role": "system", "content": message.content} | |
else: | |
raise TypeError(f"Got unknown type '{message.__class__.__name__}'.") | |
return message_dict | |
def _convert_dict_to_message(dct: Dict[str, Any]) -> BaseMessage: | |
"""Convert a dict to LangChain message.""" | |
role = dct.get("role") | |
content = dct.get("content", "") | |
if role == "assistant": | |
additional_kwargs = {} | |
tool_calls = dct.get("tool_calls", None) | |
if tool_calls is not None: | |
additional_kwargs["tool_calls"] = tool_calls | |
return AIMessage(content=content, additional_kwargs=additional_kwargs) | |
return ChatMessage(role=role, content=content) # type: ignore[arg-type] | |
def _convert_delta_to_message_chunk( | |
dct: Dict[str, Any], default_class: Type[BaseMessageChunk] | |
) -> BaseMessageChunk: | |
role = dct.get("role") | |
content = dct.get("content", "") | |
additional_kwargs = {} | |
tool_calls = dct.get("tool_call", None) | |
if tool_calls is not None: | |
additional_kwargs["tool_calls"] = tool_calls | |
if role == "assistant" or default_class == AIMessageChunk: | |
return AIMessageChunk(content=content, additional_kwargs=additional_kwargs) | |
if role or default_class == ChatMessageChunk: | |
return ChatMessageChunk(content=content, role=role) # type: ignore[arg-type] | |
return default_class(content=content) # type: ignore[call-arg] | |
class MiniMaxChat(BaseChatModel): | |
"""MiniMax large language models. | |
To use, you should have the environment variable``MINIMAX_API_KEY`` set with | |
your API token, or pass it as a named parameter to the constructor. | |
Example: | |
.. code-block:: python | |
from langchain_community.chat_models import MiniMaxChat | |
llm = MiniMaxChat(model="abab5-chat") | |
""" | |
def _identifying_params(self) -> Dict[str, Any]: | |
"""Get the identifying parameters.""" | |
return {**{"model": self.model}, **self._default_params} | |
def _llm_type(self) -> str: | |
"""Return type of llm.""" | |
return "minimax" | |
def _default_params(self) -> Dict[str, Any]: | |
"""Get the default parameters for calling OpenAI API.""" | |
return { | |
"model": self.model, | |
"max_tokens": self.max_tokens, | |
"temperature": self.temperature, | |
"top_p": self.top_p, | |
**self.model_kwargs, | |
} | |
_client: Any | |
model: str = "abab6.5-chat" | |
"""Model name to use.""" | |
max_tokens: int = 256 | |
"""Denotes the number of tokens to predict per generation.""" | |
temperature: float = 0.7 | |
"""A non-negative float that tunes the degree of randomness in generation.""" | |
top_p: float = 0.95 | |
"""Total probability mass of tokens to consider at each step.""" | |
model_kwargs: Dict[str, Any] = Field(default_factory=dict) | |
"""Holds any model parameters valid for `create` call not explicitly specified.""" | |
minimax_api_host: str = Field( | |
default="https://api.minimax.chat/v1/text/chatcompletion_v2", alias="base_url" | |
) | |
minimax_group_id: Optional[str] = Field(default=None, alias="group_id") | |
"""[DEPRECATED, keeping it for for backward compatibility] Group Id""" | |
minimax_api_key: Optional[SecretStr] = Field(default=None, alias="api_key") | |
"""Minimax API Key""" | |
streaming: bool = False | |
"""Whether to stream the results or not.""" | |
class Config: | |
"""Configuration for this pydantic object.""" | |
allow_population_by_field_name = True | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that api key and python package exists in environment.""" | |
values["minimax_api_key"] = convert_to_secret_str( | |
get_from_dict_or_env(values, "minimax_api_key", "MINIMAX_API_KEY") | |
) | |
values["minimax_group_id"] = get_from_dict_or_env( | |
values, "minimax_group_id", "MINIMAX_GROUP_ID" | |
) | |
# Get custom api url from environment. | |
values["minimax_api_host"] = get_from_dict_or_env( | |
values, | |
"minimax_api_host", | |
"MINIMAX_API_HOST", | |
values["minimax_api_host"], | |
) | |
return values | |
def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult: | |
generations = [] | |
if not isinstance(response, dict): | |
response = response.dict() | |
for res in response["choices"]: | |
message = _convert_dict_to_message(res["message"]) | |
generation_info = dict(finish_reason=res.get("finish_reason")) | |
generations.append( | |
ChatGeneration(message=message, generation_info=generation_info) | |
) | |
token_usage = response.get("usage", {}) | |
llm_output = { | |
"token_usage": token_usage, | |
"model_name": self.model, | |
} | |
return ChatResult(generations=generations, llm_output=llm_output) | |
def _create_payload_parameters( # type: ignore[no-untyped-def] | |
self, messages: List[BaseMessage], is_stream: bool = False, **kwargs | |
) -> Dict[str, Any]: | |
"""Create API request body parameters.""" | |
message_dicts = [_convert_message_to_dict(m) for m in messages] | |
payload = self._default_params | |
payload["messages"] = message_dicts | |
payload.update(**kwargs) | |
if is_stream: | |
payload["stream"] = True | |
return payload | |
def _generate( | |
self, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
stream: Optional[bool] = None, | |
**kwargs: Any, | |
) -> ChatResult: | |
"""Generate next turn in the conversation. | |
Args: | |
messages: The history of the conversation as a list of messages. Code chat | |
does not support context. | |
stop: The list of stop words (optional). | |
run_manager: The CallbackManager for LLM run, it's not used at the moment. | |
stream: Whether to stream the results or not. | |
Returns: | |
The ChatResult that contains outputs generated by the model. | |
Raises: | |
ValueError: if the last message in the list is not from human. | |
""" | |
if not messages: | |
raise ValueError( | |
"You should provide at least one message to start the chat!" | |
) | |
is_stream = stream if stream is not None else self.streaming | |
if is_stream: | |
stream_iter = self._stream( | |
messages, stop=stop, run_manager=run_manager, **kwargs | |
) | |
return generate_from_stream(stream_iter) | |
payload = self._create_payload_parameters(messages, **kwargs) | |
api_key = "" | |
if self.minimax_api_key is not None: | |
api_key = self.minimax_api_key.get_secret_value() | |
headers = { | |
"Authorization": f"Bearer {api_key}", | |
"Content-Type": "application/json", | |
} | |
import httpx | |
with httpx.Client(headers=headers, timeout=60) as client: | |
response = client.post(self.minimax_api_host, json=payload) | |
response.raise_for_status() | |
return self._create_chat_result(response.json()) | |
def _stream( | |
self, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> Iterator[ChatGenerationChunk]: | |
"""Stream the chat response in chunks.""" | |
payload = self._create_payload_parameters(messages, is_stream=True, **kwargs) | |
api_key = "" | |
if self.minimax_api_key is not None: | |
api_key = self.minimax_api_key.get_secret_value() | |
headers = { | |
"Authorization": f"Bearer {api_key}", | |
"Content-Type": "application/json", | |
} | |
import httpx | |
with httpx.Client(headers=headers, timeout=60) as client: | |
with connect_httpx_sse( | |
client, "POST", self.minimax_api_host, json=payload | |
) as event_source: | |
for sse in event_source.iter_sse(): | |
chunk = json.loads(sse.data) | |
if len(chunk["choices"]) == 0: | |
continue | |
choice = chunk["choices"][0] | |
chunk = _convert_delta_to_message_chunk( | |
choice["delta"], AIMessageChunk | |
) | |
finish_reason = choice.get("finish_reason", None) | |
generation_info = ( | |
{"finish_reason": finish_reason} | |
if finish_reason is not None | |
else None | |
) | |
chunk = ChatGenerationChunk( | |
message=chunk, generation_info=generation_info | |
) | |
yield chunk | |
if run_manager: | |
run_manager.on_llm_new_token(chunk.text, chunk=chunk) | |
if finish_reason is not None: | |
break | |
async def _agenerate( | |
self, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, | |
stream: Optional[bool] = None, | |
**kwargs: Any, | |
) -> ChatResult: | |
if not messages: | |
raise ValueError( | |
"You should provide at least one message to start the chat!" | |
) | |
is_stream = stream if stream is not None else self.streaming | |
if is_stream: | |
stream_iter = self._astream( | |
messages, stop=stop, run_manager=run_manager, **kwargs | |
) | |
return await agenerate_from_stream(stream_iter) | |
payload = self._create_payload_parameters(messages, **kwargs) | |
api_key = "" | |
if self.minimax_api_key is not None: | |
api_key = self.minimax_api_key.get_secret_value() | |
headers = { | |
"Authorization": f"Bearer {api_key}", | |
"Content-Type": "application/json", | |
} | |
import httpx | |
async with httpx.AsyncClient(headers=headers, timeout=60) as client: | |
response = await client.post(self.minimax_api_host, json=payload) | |
response.raise_for_status() | |
return self._create_chat_result(response.json()) | |
async def _astream( | |
self, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> AsyncIterator[ChatGenerationChunk]: | |
payload = self._create_payload_parameters(messages, is_stream=True, **kwargs) | |
api_key = "" | |
if self.minimax_api_key is not None: | |
api_key = self.minimax_api_key.get_secret_value() | |
headers = { | |
"Authorization": f"Bearer {api_key}", | |
"Content-Type": "application/json", | |
} | |
import httpx | |
async with httpx.AsyncClient(headers=headers, timeout=60) as client: | |
async with aconnect_httpx_sse( | |
client, "POST", self.minimax_api_host, json=payload | |
) as event_source: | |
async for sse in event_source.aiter_sse(): | |
chunk = json.loads(sse.data) | |
if len(chunk["choices"]) == 0: | |
continue | |
choice = chunk["choices"][0] | |
chunk = _convert_delta_to_message_chunk( | |
choice["delta"], AIMessageChunk | |
) | |
finish_reason = choice.get("finish_reason", None) | |
generation_info = ( | |
{"finish_reason": finish_reason} | |
if finish_reason is not None | |
else None | |
) | |
chunk = ChatGenerationChunk( | |
message=chunk, generation_info=generation_info | |
) | |
yield chunk | |
if run_manager: | |
await run_manager.on_llm_new_token(chunk.text, chunk=chunk) | |
if finish_reason is not None: | |
break | |