Spaces:
Runtime error
Runtime error
"""deepinfra.com chat models wrapper""" | |
from __future__ import annotations | |
import json | |
import logging | |
from typing import ( | |
Any, | |
AsyncIterator, | |
Callable, | |
Dict, | |
Iterator, | |
List, | |
Mapping, | |
Optional, | |
Tuple, | |
Type, | |
Union, | |
) | |
import aiohttp | |
import requests | |
from langchain_core.callbacks.manager import ( | |
AsyncCallbackManagerForLLMRun, | |
CallbackManagerForLLMRun, | |
) | |
from langchain_core.language_models.chat_models import ( | |
BaseChatModel, | |
agenerate_from_stream, | |
generate_from_stream, | |
) | |
from langchain_core.language_models.llms import create_base_retry_decorator | |
from langchain_core.messages import ( | |
AIMessage, | |
AIMessageChunk, | |
BaseMessage, | |
BaseMessageChunk, | |
ChatMessage, | |
ChatMessageChunk, | |
FunctionMessage, | |
FunctionMessageChunk, | |
HumanMessage, | |
HumanMessageChunk, | |
SystemMessage, | |
SystemMessageChunk, | |
) | |
from langchain_core.outputs import ( | |
ChatGeneration, | |
ChatGenerationChunk, | |
ChatResult, | |
) | |
from langchain_core.pydantic_v1 import Field, root_validator | |
from langchain_core.utils import get_from_dict_or_env | |
# from langchain.llms.base import create_base_retry_decorator | |
from langchain_community.utilities.requests import Requests | |
logger = logging.getLogger(__name__) | |
class ChatDeepInfraException(Exception): | |
"""Exception raised when the DeepInfra API returns an error.""" | |
pass | |
def _create_retry_decorator( | |
llm: ChatDeepInfra, | |
run_manager: Optional[ | |
Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun] | |
] = None, | |
) -> Callable[[Any], Any]: | |
"""Returns a tenacity retry decorator, preconfigured to handle PaLM exceptions.""" | |
return create_base_retry_decorator( | |
error_types=[requests.exceptions.ConnectTimeout, ChatDeepInfraException], | |
max_retries=llm.max_retries, | |
run_manager=run_manager, | |
) | |
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage: | |
role = _dict["role"] | |
if role == "user": | |
return HumanMessage(content=_dict["content"]) | |
elif role == "assistant": | |
# Fix for azure | |
# Also OpenAI returns None for tool invocations | |
content = _dict.get("content", "") or "" | |
if _dict.get("function_call"): | |
additional_kwargs = {"function_call": dict(_dict["function_call"])} | |
else: | |
additional_kwargs = {} | |
return AIMessage(content=content, additional_kwargs=additional_kwargs) | |
elif role == "system": | |
return SystemMessage(content=_dict["content"]) | |
elif role == "function": | |
return FunctionMessage(content=_dict["content"], name=_dict["name"]) | |
else: | |
return ChatMessage(content=_dict["content"], role=role) | |
def _convert_delta_to_message_chunk( | |
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk] | |
) -> BaseMessageChunk: | |
role = _dict.get("role") | |
content = _dict.get("content") or "" | |
if _dict.get("function_call"): | |
additional_kwargs = {"function_call": dict(_dict["function_call"])} | |
else: | |
additional_kwargs = {} | |
if role == "user" or default_class == HumanMessageChunk: | |
return HumanMessageChunk(content=content) | |
elif role == "assistant" or default_class == AIMessageChunk: | |
return AIMessageChunk(content=content, additional_kwargs=additional_kwargs) | |
elif role == "system" or default_class == SystemMessageChunk: | |
return SystemMessageChunk(content=content) | |
elif role == "function" or default_class == FunctionMessageChunk: | |
return FunctionMessageChunk(content=content, name=_dict["name"]) | |
elif role or default_class == ChatMessageChunk: | |
return ChatMessageChunk(content=content, role=role) # type: ignore[arg-type] | |
else: | |
return default_class(content=content) # type: ignore[call-arg] | |
def _convert_message_to_dict(message: BaseMessage) -> dict: | |
if isinstance(message, ChatMessage): | |
message_dict = {"role": message.role, "content": message.content} | |
elif isinstance(message, HumanMessage): | |
message_dict = {"role": "user", "content": message.content} | |
elif isinstance(message, AIMessage): | |
message_dict = {"role": "assistant", "content": message.content} | |
if "function_call" in message.additional_kwargs: | |
message_dict["function_call"] = message.additional_kwargs["function_call"] | |
elif isinstance(message, SystemMessage): | |
message_dict = {"role": "system", "content": message.content} | |
elif isinstance(message, FunctionMessage): | |
message_dict = { | |
"role": "function", | |
"content": message.content, | |
"name": message.name, | |
} | |
else: | |
raise ValueError(f"Got unknown type {message}") | |
if "name" in message.additional_kwargs: | |
message_dict["name"] = message.additional_kwargs["name"] | |
return message_dict | |
class ChatDeepInfra(BaseChatModel): | |
"""A chat model that uses the DeepInfra API.""" | |
# client: Any #: :meta private: | |
model_name: str = Field(default="meta-llama/Llama-2-70b-chat-hf", alias="model") | |
"""Model name to use.""" | |
deepinfra_api_token: Optional[str] = None | |
request_timeout: Optional[float] = Field(default=None, alias="timeout") | |
temperature: Optional[float] = 1 | |
model_kwargs: Dict[str, Any] = Field(default_factory=dict) | |
"""Run inference with this temperature. Must by in the closed | |
interval [0.0, 1.0].""" | |
top_p: Optional[float] = None | |
"""Decode using nucleus sampling: consider the smallest set of tokens whose | |
probability sum is at least top_p. Must be in the closed interval [0.0, 1.0].""" | |
top_k: Optional[int] = None | |
"""Decode using top-k sampling: consider the set of top_k most probable tokens. | |
Must be positive.""" | |
n: int = 1 | |
"""Number of chat completions to generate for each prompt. Note that the API may | |
not return the full n completions if duplicates are generated.""" | |
max_tokens: int = 256 | |
streaming: bool = False | |
max_retries: int = 1 | |
def _default_params(self) -> Dict[str, Any]: | |
"""Get the default parameters for calling OpenAI API.""" | |
return { | |
"model": self.model_name, | |
"max_tokens": self.max_tokens, | |
"stream": self.streaming, | |
"n": self.n, | |
"temperature": self.temperature, | |
"request_timeout": self.request_timeout, | |
**self.model_kwargs, | |
} | |
def _client_params(self) -> Dict[str, Any]: | |
"""Get the parameters used for the openai client.""" | |
return {**self._default_params} | |
def completion_with_retry( | |
self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any | |
) -> Any: | |
"""Use tenacity to retry the completion call.""" | |
retry_decorator = _create_retry_decorator(self, run_manager=run_manager) | |
def _completion_with_retry(**kwargs: Any) -> Any: | |
try: | |
request_timeout = kwargs.pop("request_timeout") | |
request = Requests(headers=self._headers()) | |
response = request.post( | |
url=self._url(), data=self._body(kwargs), timeout=request_timeout | |
) | |
self._handle_status(response.status_code, response.text) | |
return response | |
except Exception as e: | |
# import pdb; pdb.set_trace() | |
print("EX", e) # noqa: T201 | |
raise | |
return _completion_with_retry(**kwargs) | |
async def acompletion_with_retry( | |
self, | |
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> Any: | |
"""Use tenacity to retry the async completion call.""" | |
retry_decorator = _create_retry_decorator(self, run_manager=run_manager) | |
async def _completion_with_retry(**kwargs: Any) -> Any: | |
try: | |
request_timeout = kwargs.pop("request_timeout") | |
request = Requests(headers=self._headers()) | |
async with request.apost( | |
url=self._url(), data=self._body(kwargs), timeout=request_timeout | |
) as response: | |
self._handle_status(response.status, response.text) | |
return await response.json() | |
except Exception as e: | |
print("EX", e) # noqa: T201 | |
raise | |
return await _completion_with_retry(**kwargs) | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate api key, python package exists, temperature, top_p, and top_k.""" | |
# For compatibility with LiteLLM | |
api_key = get_from_dict_or_env( | |
values, | |
"deepinfra_api_key", | |
"DEEPINFRA_API_KEY", | |
default="", | |
) | |
values["deepinfra_api_token"] = get_from_dict_or_env( | |
values, | |
"deepinfra_api_token", | |
"DEEPINFRA_API_TOKEN", | |
default=api_key, | |
) | |
if values["temperature"] is not None and not 0 <= values["temperature"] <= 1: | |
raise ValueError("temperature must be in the range [0.0, 1.0]") | |
if values["top_p"] is not None and not 0 <= values["top_p"] <= 1: | |
raise ValueError("top_p must be in the range [0.0, 1.0]") | |
if values["top_k"] is not None and values["top_k"] <= 0: | |
raise ValueError("top_k must be positive") | |
return values | |
def _generate( | |
self, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
stream: Optional[bool] = None, | |
**kwargs: Any, | |
) -> ChatResult: | |
should_stream = stream if stream is not None else self.streaming | |
if should_stream: | |
stream_iter = self._stream( | |
messages, stop=stop, run_manager=run_manager, **kwargs | |
) | |
return generate_from_stream(stream_iter) | |
message_dicts, params = self._create_message_dicts(messages, stop) | |
params = {**params, **kwargs} | |
response = self.completion_with_retry( | |
messages=message_dicts, run_manager=run_manager, **params | |
) | |
return self._create_chat_result(response.json()) | |
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult: | |
generations = [] | |
for res in response["choices"]: | |
message = _convert_dict_to_message(res["message"]) | |
gen = ChatGeneration( | |
message=message, | |
generation_info=dict(finish_reason=res.get("finish_reason")), | |
) | |
generations.append(gen) | |
token_usage = response.get("usage", {}) | |
llm_output = {"token_usage": token_usage, "model": self.model_name} | |
res = ChatResult(generations=generations, llm_output=llm_output) | |
return res | |
def _create_message_dicts( | |
self, messages: List[BaseMessage], stop: Optional[List[str]] | |
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: | |
params = self._client_params | |
if stop is not None: | |
if "stop" in params: | |
raise ValueError("`stop` found in both the input and default params.") | |
params["stop"] = stop | |
message_dicts = [_convert_message_to_dict(m) for m in messages] | |
return message_dicts, params | |
def _stream( | |
self, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> Iterator[ChatGenerationChunk]: | |
message_dicts, params = self._create_message_dicts(messages, stop) | |
params = {**params, **kwargs, "stream": True} | |
response = self.completion_with_retry( | |
messages=message_dicts, run_manager=run_manager, **params | |
) | |
for line in _parse_stream(response.iter_lines()): | |
chunk = _handle_sse_line(line) | |
if chunk: | |
cg_chunk = ChatGenerationChunk(message=chunk, generation_info=None) | |
if run_manager: | |
run_manager.on_llm_new_token(str(chunk.content), chunk=cg_chunk) | |
yield cg_chunk | |
async def _astream( | |
self, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> AsyncIterator[ChatGenerationChunk]: | |
message_dicts, params = self._create_message_dicts(messages, stop) | |
params = {"messages": message_dicts, "stream": True, **params, **kwargs} | |
request_timeout = params.pop("request_timeout") | |
request = Requests(headers=self._headers()) | |
async with request.apost( | |
url=self._url(), data=self._body(params), timeout=request_timeout | |
) as response: | |
async for line in _parse_stream_async(response.content): | |
chunk = _handle_sse_line(line) | |
if chunk: | |
cg_chunk = ChatGenerationChunk(message=chunk, generation_info=None) | |
if run_manager: | |
await run_manager.on_llm_new_token( | |
str(chunk.content), chunk=cg_chunk | |
) | |
yield cg_chunk | |
async def _agenerate( | |
self, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, | |
stream: Optional[bool] = None, | |
**kwargs: Any, | |
) -> ChatResult: | |
should_stream = stream if stream is not None else self.streaming | |
if should_stream: | |
stream_iter = self._astream( | |
messages, stop=stop, run_manager=run_manager, **kwargs | |
) | |
return await agenerate_from_stream(stream_iter) | |
message_dicts, params = self._create_message_dicts(messages, stop) | |
params = {"messages": message_dicts, **params, **kwargs} | |
res = await self.acompletion_with_retry(run_manager=run_manager, **params) | |
return self._create_chat_result(res) | |
def _identifying_params(self) -> Dict[str, Any]: | |
"""Get the identifying parameters.""" | |
return { | |
"model": self.model_name, | |
"temperature": self.temperature, | |
"top_p": self.top_p, | |
"top_k": self.top_k, | |
"n": self.n, | |
} | |
def _llm_type(self) -> str: | |
return "deepinfra-chat" | |
def _handle_status(self, code: int, text: Any) -> None: | |
if code >= 500: | |
raise ChatDeepInfraException(f"DeepInfra Server: Error {code}") | |
elif code >= 400: | |
raise ValueError(f"DeepInfra received an invalid payload: {text}") | |
elif code != 200: | |
raise Exception( | |
f"DeepInfra returned an unexpected response with status " | |
f"{code}: {text}" | |
) | |
def _url(self) -> str: | |
return "https://stage.api.deepinfra.com/v1/openai/chat/completions" | |
def _headers(self) -> Dict: | |
return { | |
"Authorization": f"bearer {self.deepinfra_api_token}", | |
"Content-Type": "application/json", | |
} | |
def _body(self, kwargs: Any) -> Dict: | |
return kwargs | |
def _parse_stream(rbody: Iterator[bytes]) -> Iterator[str]: | |
for line in rbody: | |
_line = _parse_stream_helper(line) | |
if _line is not None: | |
yield _line | |
async def _parse_stream_async(rbody: aiohttp.StreamReader) -> AsyncIterator[str]: | |
async for line in rbody: | |
_line = _parse_stream_helper(line) | |
if _line is not None: | |
yield _line | |
def _parse_stream_helper(line: bytes) -> Optional[str]: | |
if line and line.startswith(b"data:"): | |
if line.startswith(b"data: "): | |
# SSE event may be valid when it contain whitespace | |
line = line[len(b"data: ") :] | |
else: | |
line = line[len(b"data:") :] | |
if line.strip() == b"[DONE]": | |
# return here will cause GeneratorExit exception in urllib3 | |
# and it will close http connection with TCP Reset | |
return None | |
else: | |
return line.decode("utf-8") | |
return None | |
def _handle_sse_line(line: str) -> Optional[BaseMessageChunk]: | |
try: | |
obj = json.loads(line) | |
default_chunk_class = AIMessageChunk | |
delta = obj.get("choices", [{}])[0].get("delta", {}) | |
return _convert_delta_to_message_chunk(delta, default_chunk_class) | |
except Exception: | |
return None | |