Spaces:
Runtime error
Runtime error
"""Anyscale Endpoints chat wrapper. Relies heavily on ChatOpenAI.""" | |
from __future__ import annotations | |
import logging | |
import os | |
import sys | |
from typing import TYPE_CHECKING, Dict, Optional, Set | |
import requests | |
from langchain_core.messages import BaseMessage | |
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator | |
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env | |
from langchain_community.adapters.openai import convert_message_to_dict | |
from langchain_community.chat_models.openai import ( | |
ChatOpenAI, | |
_import_tiktoken, | |
) | |
from langchain_community.utils.openai import is_openai_v1 | |
if TYPE_CHECKING: | |
import tiktoken | |
logger = logging.getLogger(__name__) | |
DEFAULT_API_BASE = "https://api.endpoints.anyscale.com/v1" | |
DEFAULT_MODEL = "meta-llama/Llama-2-7b-chat-hf" | |
class ChatAnyscale(ChatOpenAI): | |
"""`Anyscale` Chat large language models. | |
See https://www.anyscale.com/ for information about Anyscale. | |
To use, you should have the ``openai`` python package installed, and the | |
environment variable ``ANYSCALE_API_KEY`` set with your API key. | |
Alternatively, you can use the anyscale_api_key keyword argument. | |
Any parameters that are valid to be passed to the `openai.create` call can be passed | |
in, even if not explicitly saved on this class. | |
Example: | |
.. code-block:: python | |
from langchain_community.chat_models import ChatAnyscale | |
chat = ChatAnyscale(model_name="meta-llama/Llama-2-7b-chat-hf") | |
""" | |
def _llm_type(self) -> str: | |
"""Return type of chat model.""" | |
return "anyscale-chat" | |
def lc_secrets(self) -> Dict[str, str]: | |
return {"anyscale_api_key": "ANYSCALE_API_KEY"} | |
def is_lc_serializable(cls) -> bool: | |
return False | |
anyscale_api_key: SecretStr = Field(default=None) | |
"""AnyScale Endpoints API keys.""" | |
model_name: str = Field(default=DEFAULT_MODEL, alias="model") | |
"""Model name to use.""" | |
anyscale_api_base: str = Field(default=DEFAULT_API_BASE) | |
"""Base URL path for API requests, | |
leave blank if not using a proxy or service emulator.""" | |
anyscale_proxy: Optional[str] = None | |
"""To support explicit proxy for Anyscale.""" | |
available_models: Optional[Set[str]] = None | |
"""Available models from Anyscale API.""" | |
def get_available_models( | |
anyscale_api_key: Optional[str] = None, | |
anyscale_api_base: str = DEFAULT_API_BASE, | |
) -> Set[str]: | |
"""Get available models from Anyscale API.""" | |
try: | |
anyscale_api_key = anyscale_api_key or os.environ["ANYSCALE_API_KEY"] | |
except KeyError as e: | |
raise ValueError( | |
"Anyscale API key must be passed as keyword argument or " | |
"set in environment variable ANYSCALE_API_KEY.", | |
) from e | |
models_url = f"{anyscale_api_base}/models" | |
models_response = requests.get( | |
models_url, | |
headers={ | |
"Authorization": f"Bearer {anyscale_api_key}", | |
}, | |
) | |
if models_response.status_code != 200: | |
raise ValueError( | |
f"Error getting models from {models_url}: " | |
f"{models_response.status_code}", | |
) | |
return {model["id"] for model in models_response.json()["data"]} | |
def validate_environment(cls, values: dict) -> dict: | |
"""Validate that api key and python package exists in environment.""" | |
values["anyscale_api_key"] = convert_to_secret_str( | |
get_from_dict_or_env( | |
values, | |
"anyscale_api_key", | |
"ANYSCALE_API_KEY", | |
) | |
) | |
values["anyscale_api_base"] = get_from_dict_or_env( | |
values, | |
"anyscale_api_base", | |
"ANYSCALE_API_BASE", | |
default=DEFAULT_API_BASE, | |
) | |
values["openai_proxy"] = get_from_dict_or_env( | |
values, | |
"anyscale_proxy", | |
"ANYSCALE_PROXY", | |
default="", | |
) | |
try: | |
import openai | |
except ImportError as e: | |
raise ImportError( | |
"Could not import openai python package. " | |
"Please install it with `pip install openai`.", | |
) from e | |
try: | |
if is_openai_v1(): | |
client_params = { | |
"api_key": values["anyscale_api_key"].get_secret_value(), | |
"base_url": values["anyscale_api_base"], | |
# To do: future support | |
# "organization": values["openai_organization"], | |
# "timeout": values["request_timeout"], | |
# "max_retries": values["max_retries"], | |
# "default_headers": values["default_headers"], | |
# "default_query": values["default_query"], | |
# "http_client": values["http_client"], | |
} | |
if not values.get("client"): | |
values["client"] = openai.OpenAI(**client_params).chat.completions | |
if not values.get("async_client"): | |
values["async_client"] = openai.AsyncOpenAI( | |
**client_params | |
).chat.completions | |
else: | |
values["openai_api_base"] = values["anyscale_api_base"] | |
values["openai_api_key"] = values["anyscale_api_key"].get_secret_value() | |
values["client"] = openai.ChatCompletion | |
except AttributeError as exc: | |
raise ValueError( | |
"`openai` has no `ChatCompletion` attribute, this is likely " | |
"due to an old version of the openai package. Try upgrading it " | |
"with `pip install --upgrade openai`.", | |
) from exc | |
if "model_name" not in values.keys(): | |
values["model_name"] = DEFAULT_MODEL | |
model_name = values["model_name"] | |
available_models = cls.get_available_models( | |
values["anyscale_api_key"].get_secret_value(), | |
values["anyscale_api_base"], | |
) | |
if model_name not in available_models: | |
raise ValueError( | |
f"Model name {model_name} not found in available models: " | |
f"{available_models}.", | |
) | |
values["available_models"] = available_models | |
return values | |
def _get_encoding_model(self) -> tuple[str, tiktoken.Encoding]: | |
tiktoken_ = _import_tiktoken() | |
if self.tiktoken_model_name is not None: | |
model = self.tiktoken_model_name | |
else: | |
model = self.model_name | |
# Returns the number of tokens used by a list of messages. | |
try: | |
encoding = tiktoken_.encoding_for_model("gpt-3.5-turbo-0301") | |
except KeyError: | |
logger.warning("Warning: model not found. Using cl100k_base encoding.") | |
model = "cl100k_base" | |
encoding = tiktoken_.get_encoding(model) | |
return model, encoding | |
def get_num_tokens_from_messages(self, messages: list[BaseMessage]) -> int: | |
"""Calculate num tokens with tiktoken package. | |
Official documentation: https://github.com/openai/openai-cookbook/blob/main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb | |
""" | |
if sys.version_info[1] <= 7: | |
return super().get_num_tokens_from_messages(messages) | |
model, encoding = self._get_encoding_model() | |
tokens_per_message = 3 | |
tokens_per_name = 1 | |
num_tokens = 0 | |
messages_dict = [convert_message_to_dict(m) for m in messages] | |
for message in messages_dict: | |
num_tokens += tokens_per_message | |
for key, value in message.items(): | |
# Cast str(value) in case the message value is not a string | |
# This occurs with function messages | |
num_tokens += len(encoding.encode(str(value))) | |
if key == "name": | |
num_tokens += tokens_per_name | |
# every reply is primed with <im_start>assistant | |
num_tokens += 3 | |
return num_tokens | |