File size: 6,176 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "ba5f8741",
   "metadata": {},
   "source": [
    "# Custom multi-action agent\n",
    "\n",
    "This notebook goes through how to create your own custom agent.\n",
    "\n",
    "An agent consists of two parts:\n",
    "\n",
    "- Tools: The tools the agent has available to use.\n",
    "- The agent class itself: this decides which action to take.\n",
    "        \n",
    "        \n",
    "In this notebook we walk through how to create a custom agent that predicts/takes multiple steps at a time."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "9af9734e",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.agents import AgentExecutor, BaseMultiActionAgent, Tool\n",
    "from langchain_community.utilities import SerpAPIWrapper"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "d7c4ebdc",
   "metadata": {},
   "outputs": [],
   "source": [
    "def random_word(query: str) -> str:\n",
    "    print(\"\\nNow I'm doing this!\")\n",
    "    return \"foo\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "becda2a1",
   "metadata": {},
   "outputs": [],
   "source": [
    "search = SerpAPIWrapper()\n",
    "tools = [\n",
    "    Tool(\n",
    "        name=\"Search\",\n",
    "        func=search.run,\n",
    "        description=\"useful for when you need to answer questions about current events\",\n",
    "    ),\n",
    "    Tool(\n",
    "        name=\"RandomWord\",\n",
    "        func=random_word,\n",
    "        description=\"call this to get a random word.\",\n",
    "    ),\n",
    "]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "a33e2f7e",
   "metadata": {},
   "outputs": [],
   "source": [
    "from typing import Any, List, Tuple, Union\n",
    "\n",
    "from langchain_core.agents import AgentAction, AgentFinish\n",
    "\n",
    "\n",
    "class FakeAgent(BaseMultiActionAgent):\n",
    "    \"\"\"Fake Custom Agent.\"\"\"\n",
    "\n",
    "    @property\n",
    "    def input_keys(self):\n",
    "        return [\"input\"]\n",
    "\n",
    "    def plan(\n",
    "        self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any\n",
    "    ) -> Union[List[AgentAction], AgentFinish]:\n",
    "        \"\"\"Given input, decided what to do.\n",
    "\n",
    "        Args:\n",
    "            intermediate_steps: Steps the LLM has taken to date,\n",
    "                along with observations\n",
    "            **kwargs: User inputs.\n",
    "\n",
    "        Returns:\n",
    "            Action specifying what tool to use.\n",
    "        \"\"\"\n",
    "        if len(intermediate_steps) == 0:\n",
    "            return [\n",
    "                AgentAction(tool=\"Search\", tool_input=kwargs[\"input\"], log=\"\"),\n",
    "                AgentAction(tool=\"RandomWord\", tool_input=kwargs[\"input\"], log=\"\"),\n",
    "            ]\n",
    "        else:\n",
    "            return AgentFinish(return_values={\"output\": \"bar\"}, log=\"\")\n",
    "\n",
    "    async def aplan(\n",
    "        self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any\n",
    "    ) -> Union[List[AgentAction], AgentFinish]:\n",
    "        \"\"\"Given input, decided what to do.\n",
    "\n",
    "        Args:\n",
    "            intermediate_steps: Steps the LLM has taken to date,\n",
    "                along with observations\n",
    "            **kwargs: User inputs.\n",
    "\n",
    "        Returns:\n",
    "            Action specifying what tool to use.\n",
    "        \"\"\"\n",
    "        if len(intermediate_steps) == 0:\n",
    "            return [\n",
    "                AgentAction(tool=\"Search\", tool_input=kwargs[\"input\"], log=\"\"),\n",
    "                AgentAction(tool=\"RandomWord\", tool_input=kwargs[\"input\"], log=\"\"),\n",
    "            ]\n",
    "        else:\n",
    "            return AgentFinish(return_values={\"output\": \"bar\"}, log=\"\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "655d72f6",
   "metadata": {},
   "outputs": [],
   "source": [
    "agent = FakeAgent()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "490604e9",
   "metadata": {},
   "outputs": [],
   "source": [
    "agent_executor = AgentExecutor.from_agent_and_tools(\n",
    "    agent=agent, tools=tools, verbose=True\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "653b1617",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3m\u001b[0m\u001b[36;1m\u001b[1;3mThe current population of Canada is 38,669,152 as of Monday, April 24, 2023, based on Worldometer elaboration of the latest United Nations data.\u001b[0m\u001b[32;1m\u001b[1;3m\u001b[0m\n",
      "Now I'm doing this!\n",
      "\u001b[33;1m\u001b[1;3mfoo\u001b[0m\u001b[32;1m\u001b[1;3m\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'bar'"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "agent_executor.run(\"How many people live in canada as of 2023?\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "adefb4c2",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.3"
  },
  "vscode": {
   "interpreter": {
    "hash": "18784188d7ecd866c0586ac068b02361a6896dc3a29b64f5cc957f09c590acef"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}