File size: 16,900 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "ba5f8741",
   "metadata": {},
   "source": [
    "# Custom agent with tool retrieval\n",
    "\n",
    "The novel idea introduced in this notebook is the idea of using retrieval to select the set of tools to use to answer an agent query. This is useful when you have many many tools to select from. You cannot put the description of all the tools in the prompt (because of context length issues) so instead you dynamically select the N tools you do want to consider using at run time.\n",
    "\n",
    "In this notebook we will create a somewhat contrived example. We will have one legitimate tool (search) and then 99 fake tools which are just nonsense. We will then add a step in the prompt template that takes the user input and retrieves tool relevant to the query."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fea4812c",
   "metadata": {},
   "source": [
    "## Set up environment\n",
    "\n",
    "Do necessary imports, etc."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "9af9734e",
   "metadata": {},
   "outputs": [],
   "source": [
    "import re\n",
    "from typing import Union\n",
    "\n",
    "from langchain.agents import (\n",
    "    AgentExecutor,\n",
    "    AgentOutputParser,\n",
    "    LLMSingleActionAgent,\n",
    "    Tool,\n",
    ")\n",
    "from langchain.chains import LLMChain\n",
    "from langchain.prompts import StringPromptTemplate\n",
    "from langchain_community.utilities import SerpAPIWrapper\n",
    "from langchain_core.agents import AgentAction, AgentFinish\n",
    "from langchain_openai import OpenAI"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6df0253f",
   "metadata": {},
   "source": [
    "## Set up tools\n",
    "\n",
    "We will create one legitimate tool (search) and then 99 fake tools."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "becda2a1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define which tools the agent can use to answer user queries\n",
    "search = SerpAPIWrapper()\n",
    "search_tool = Tool(\n",
    "    name=\"Search\",\n",
    "    func=search.run,\n",
    "    description=\"useful for when you need to answer questions about current events\",\n",
    ")\n",
    "\n",
    "\n",
    "def fake_func(inp: str) -> str:\n",
    "    return \"foo\"\n",
    "\n",
    "\n",
    "fake_tools = [\n",
    "    Tool(\n",
    "        name=f\"foo-{i}\",\n",
    "        func=fake_func,\n",
    "        description=f\"a silly function that you can use to get more information about the number {i}\",\n",
    "    )\n",
    "    for i in range(99)\n",
    "]\n",
    "ALL_TOOLS = [search_tool] + fake_tools"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "17362717",
   "metadata": {},
   "source": [
    "## Tool Retriever\n",
    "\n",
    "We will use a vector store to create embeddings for each tool description. Then, for an incoming query we can create embeddings for that query and do a similarity search for relevant tools."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "77c4be4b",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_community.vectorstores import FAISS\n",
    "from langchain_core.documents import Document\n",
    "from langchain_openai import OpenAIEmbeddings"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "9092a158",
   "metadata": {},
   "outputs": [],
   "source": [
    "docs = [\n",
    "    Document(page_content=t.description, metadata={\"index\": i})\n",
    "    for i, t in enumerate(ALL_TOOLS)\n",
    "]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "affc4e56",
   "metadata": {},
   "outputs": [],
   "source": [
    "vector_store = FAISS.from_documents(docs, OpenAIEmbeddings())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "735a7566",
   "metadata": {},
   "outputs": [],
   "source": [
    "retriever = vector_store.as_retriever()\n",
    "\n",
    "\n",
    "def get_tools(query):\n",
    "    docs = retriever.invoke(query)\n",
    "    return [ALL_TOOLS[d.metadata[\"index\"]] for d in docs]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7699afd7",
   "metadata": {},
   "source": [
    "We can now test this retriever to see if it seems to work."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "425f2886",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[Tool(name='Search', description='useful for when you need to answer questions about current events', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<bound method SerpAPIWrapper.run of SerpAPIWrapper(search_engine=<class 'serpapi.google_search.GoogleSearch'>, params={'engine': 'google', 'google_domain': 'google.com', 'gl': 'us', 'hl': 'en'}, serpapi_api_key='', aiosession=None)>, coroutine=None),\n",
       " Tool(name='foo-95', description='a silly function that you can use to get more information about the number 95', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None),\n",
       " Tool(name='foo-12', description='a silly function that you can use to get more information about the number 12', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None),\n",
       " Tool(name='foo-15', description='a silly function that you can use to get more information about the number 15', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None)]"
      ]
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "get_tools(\"whats the weather?\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "4036dd19",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[Tool(name='foo-13', description='a silly function that you can use to get more information about the number 13', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None),\n",
       " Tool(name='foo-12', description='a silly function that you can use to get more information about the number 12', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None),\n",
       " Tool(name='foo-14', description='a silly function that you can use to get more information about the number 14', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None),\n",
       " Tool(name='foo-11', description='a silly function that you can use to get more information about the number 11', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None)]"
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "get_tools(\"whats the number 13?\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2e7a075c",
   "metadata": {},
   "source": [
    "## Prompt template\n",
    "\n",
    "The prompt template is pretty standard, because we're not actually changing that much logic in the actual prompt template, but rather we are just changing how retrieval is done."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "339b1bb8",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Set up the base template\n",
    "template = \"\"\"Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools:\n",
    "\n",
    "{tools}\n",
    "\n",
    "Use the following format:\n",
    "\n",
    "Question: the input question you must answer\n",
    "Thought: you should always think about what to do\n",
    "Action: the action to take, should be one of [{tool_names}]\n",
    "Action Input: the input to the action\n",
    "Observation: the result of the action\n",
    "... (this Thought/Action/Action Input/Observation can repeat N times)\n",
    "Thought: I now know the final answer\n",
    "Final Answer: the final answer to the original input question\n",
    "\n",
    "Begin! Remember to speak as a pirate when giving your final answer. Use lots of \"Arg\"s\n",
    "\n",
    "Question: {input}\n",
    "{agent_scratchpad}\"\"\""
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1583acdc",
   "metadata": {},
   "source": [
    "The custom prompt template now has the concept of a `tools_getter`, which we call on the input to select the tools to use."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 52,
   "id": "fd969d31",
   "metadata": {},
   "outputs": [],
   "source": [
    "from typing import Callable\n",
    "\n",
    "\n",
    "# Set up a prompt template\n",
    "class CustomPromptTemplate(StringPromptTemplate):\n",
    "    # The template to use\n",
    "    template: str\n",
    "    ############## NEW ######################\n",
    "    # The list of tools available\n",
    "    tools_getter: Callable\n",
    "\n",
    "    def format(self, **kwargs) -> str:\n",
    "        # Get the intermediate steps (AgentAction, Observation tuples)\n",
    "        # Format them in a particular way\n",
    "        intermediate_steps = kwargs.pop(\"intermediate_steps\")\n",
    "        thoughts = \"\"\n",
    "        for action, observation in intermediate_steps:\n",
    "            thoughts += action.log\n",
    "            thoughts += f\"\\nObservation: {observation}\\nThought: \"\n",
    "        # Set the agent_scratchpad variable to that value\n",
    "        kwargs[\"agent_scratchpad\"] = thoughts\n",
    "        ############## NEW ######################\n",
    "        tools = self.tools_getter(kwargs[\"input\"])\n",
    "        # Create a tools variable from the list of tools provided\n",
    "        kwargs[\"tools\"] = \"\\n\".join(\n",
    "            [f\"{tool.name}: {tool.description}\" for tool in tools]\n",
    "        )\n",
    "        # Create a list of tool names for the tools provided\n",
    "        kwargs[\"tool_names\"] = \", \".join([tool.name for tool in tools])\n",
    "        return self.template.format(**kwargs)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 53,
   "id": "798ef9fb",
   "metadata": {},
   "outputs": [],
   "source": [
    "prompt = CustomPromptTemplate(\n",
    "    template=template,\n",
    "    tools_getter=get_tools,\n",
    "    # This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically\n",
    "    # This includes the `intermediate_steps` variable because that is needed\n",
    "    input_variables=[\"input\", \"intermediate_steps\"],\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ef3a1af3",
   "metadata": {},
   "source": [
    "## Output parser\n",
    "\n",
    "The output parser is unchanged from the previous notebook, since we are not changing anything about the output format."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 54,
   "id": "7c6fe0d3",
   "metadata": {},
   "outputs": [],
   "source": [
    "class CustomOutputParser(AgentOutputParser):\n",
    "    def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:\n",
    "        # Check if agent should finish\n",
    "        if \"Final Answer:\" in llm_output:\n",
    "            return AgentFinish(\n",
    "                # Return values is generally always a dictionary with a single `output` key\n",
    "                # It is not recommended to try anything else at the moment :)\n",
    "                return_values={\"output\": llm_output.split(\"Final Answer:\")[-1].strip()},\n",
    "                log=llm_output,\n",
    "            )\n",
    "        # Parse out the action and action input\n",
    "        regex = r\"Action\\s*\\d*\\s*:(.*?)\\nAction\\s*\\d*\\s*Input\\s*\\d*\\s*:[\\s]*(.*)\"\n",
    "        match = re.search(regex, llm_output, re.DOTALL)\n",
    "        if not match:\n",
    "            raise ValueError(f\"Could not parse LLM output: `{llm_output}`\")\n",
    "        action = match.group(1).strip()\n",
    "        action_input = match.group(2)\n",
    "        # Return the action and action input\n",
    "        return AgentAction(\n",
    "            tool=action, tool_input=action_input.strip(\" \").strip('\"'), log=llm_output\n",
    "        )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 55,
   "id": "d278706a",
   "metadata": {},
   "outputs": [],
   "source": [
    "output_parser = CustomOutputParser()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "170587b1",
   "metadata": {},
   "source": [
    "## Set up LLM, stop sequence, and the agent\n",
    "\n",
    "Also the same as the previous notebook."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 56,
   "id": "f9d4c374",
   "metadata": {},
   "outputs": [],
   "source": [
    "llm = OpenAI(temperature=0)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "id": "9b1cc2a2",
   "metadata": {},
   "outputs": [],
   "source": [
    "# LLM chain consisting of the LLM and a prompt\n",
    "llm_chain = LLMChain(llm=llm, prompt=prompt)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 58,
   "id": "e4f5092f",
   "metadata": {},
   "outputs": [],
   "source": [
    "tools = get_tools(\"whats the weather?\")\n",
    "tool_names = [tool.name for tool in tools]\n",
    "agent = LLMSingleActionAgent(\n",
    "    llm_chain=llm_chain,\n",
    "    output_parser=output_parser,\n",
    "    stop=[\"\\nObservation:\"],\n",
    "    allowed_tools=tool_names,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "aa8a5326",
   "metadata": {},
   "source": [
    "## Use the Agent\n",
    "\n",
    "Now we can use it!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 59,
   "id": "490604e9",
   "metadata": {},
   "outputs": [],
   "source": [
    "agent_executor = AgentExecutor.from_agent_and_tools(\n",
    "    agent=agent, tools=tools, verbose=True\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 60,
   "id": "653b1617",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3mThought: I need to find out what the weather is in SF\n",
      "Action: Search\n",
      "Action Input: Weather in SF\u001b[0m\n",
      "\n",
      "Observation:\u001b[36;1m\u001b[1;3mMostly cloudy skies early, then partly cloudy in the afternoon. High near 60F. ENE winds shifting to W at 10 to 15 mph. Humidity71%. UV Index6 of 10.\u001b[0m\u001b[32;1m\u001b[1;3m I now know the final answer\n",
      "Final Answer: 'Arg, 'tis mostly cloudy skies early, then partly cloudy in the afternoon. High near 60F. ENE winds shiftin' to W at 10 to 15 mph. Humidity71%. UV Index6 of 10.\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "\"'Arg, 'tis mostly cloudy skies early, then partly cloudy in the afternoon. High near 60F. ENE winds shiftin' to W at 10 to 15 mph. Humidity71%. UV Index6 of 10.\""
      ]
     },
     "execution_count": 60,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "agent_executor.run(\"What's the weather in SF?\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2481ee76",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.1"
  },
  "vscode": {
   "interpreter": {
    "hash": "18784188d7ecd866c0586ac068b02361a6896dc3a29b64f5cc957f09c590acef"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}