File size: 24,429 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
"""Apache Cassandra database wrapper."""
from __future__ import annotations

import re
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple, Union

from langchain_core.pydantic_v1 import BaseModel, Field, root_validator

if TYPE_CHECKING:
    from cassandra.cluster import ResultSet, Session

IGNORED_KEYSPACES = [
    "system",
    "system_auth",
    "system_distributed",
    "system_schema",
    "system_traces",
    "system_views",
    "datastax_sla",
    "data_endpoint_auth",
]


class CassandraDatabase:
    """Apache Cassandra® database wrapper."""

    def __init__(
        self,
        session: Optional[Session] = None,
        exclude_tables: Optional[List[str]] = None,
        include_tables: Optional[List[str]] = None,
        cassio_init_kwargs: Optional[Dict[str, Any]] = None,
    ):
        _session = self._resolve_session(session, cassio_init_kwargs)
        if not _session:
            raise ValueError("Session not provided and cannot be resolved")
        self._session = _session

        self._exclude_keyspaces = IGNORED_KEYSPACES
        self._exclude_tables = exclude_tables or []
        self._include_tables = include_tables or []

    def run(
        self,
        query: str,
        fetch: str = "all",
        **kwargs: Any,
    ) -> Union[list, Dict[str, Any], ResultSet]:
        """Execute a CQL query and return the results."""
        if fetch == "all":
            return self.fetch_all(query, **kwargs)
        elif fetch == "one":
            return self.fetch_one(query, **kwargs)
        elif fetch == "cursor":
            return self._fetch(query, **kwargs)
        else:
            raise ValueError("Fetch parameter must be either 'one', 'all', or 'cursor'")

    def _fetch(self, query: str, **kwargs: Any) -> ResultSet:
        clean_query = self._validate_cql(query, "SELECT")
        return self._session.execute(clean_query, **kwargs)

    def fetch_all(self, query: str, **kwargs: Any) -> list:
        return list(self._fetch(query, **kwargs))

    def fetch_one(self, query: str, **kwargs: Any) -> Dict[str, Any]:
        result = self._fetch(query, **kwargs)
        return result.one()._asdict() if result else {}

    def get_keyspace_tables(self, keyspace: str) -> List[Table]:
        """Get the Table objects for the specified keyspace."""
        schema = self._resolve_schema([keyspace])
        if keyspace in schema:
            return schema[keyspace]
        else:
            return []

    # This is a more basic string building function that doesn't use a query builder
    # or prepared statements
    # TODO: Refactor to use prepared statements
    def get_table_data(
        self, keyspace: str, table: str, predicate: str, limit: int
    ) -> str:
        """Get data from the specified table in the specified keyspace."""

        query = f"SELECT * FROM {keyspace}.{table}"

        if predicate:
            query += f" WHERE {predicate}"
        if limit:
            query += f" LIMIT {limit}"

        query += ";"

        result = self.fetch_all(query)
        data = "\n".join(str(row) for row in result)
        return data

    def get_context(self) -> Dict[str, Any]:
        """Return db context that you may want in agent prompt."""
        keyspaces = self._fetch_keyspaces()
        return {"keyspaces": ", ".join(keyspaces)}

    def format_keyspace_to_markdown(
        self, keyspace: str, tables: Optional[List[Table]] = None
    ) -> str:
        """
        Generates a markdown representation of the schema for a specific keyspace
        by iterating over all tables within that keyspace and calling their
        as_markdown method.

        Args:
            keyspace: The name of the keyspace to generate markdown documentation for.
            tables: list of tables in the keyspace; it will be resolved if not provided.

        Returns:
            A string containing the markdown representation of the specified
            keyspace schema.
        """
        if not tables:
            tables = self.get_keyspace_tables(keyspace)

        if tables:
            output = f"## Keyspace: {keyspace}\n\n"
            if tables:
                for table in tables:
                    output += table.as_markdown(include_keyspace=False, header_level=3)
                    output += "\n\n"
            else:
                output += "No tables present in keyspace\n\n"

            return output
        else:
            return ""

    def format_schema_to_markdown(self) -> str:
        """
        Generates a markdown representation of the schema for all keyspaces and tables
        within the CassandraDatabase instance. This method utilizes the
        format_keyspace_to_markdown method to create markdown sections for each
        keyspace, assembling them into a comprehensive schema document.

        Iterates through each keyspace in the database, utilizing
        format_keyspace_to_markdown to generate markdown for each keyspace's schema,
        including details of its tables. These sections are concatenated to form a
        single markdown document that represents the schema of the entire database or
        the subset of keyspaces that have been resolved in this instance.

        Returns:
            A markdown string that documents the schema of all resolved keyspaces and
            their tables within this CassandraDatabase instance. This includes keyspace
            names, table names, comments, columns, partition keys, clustering keys,
            and indexes for each table.
        """
        schema = self._resolve_schema()
        output = "# Cassandra Database Schema\n\n"
        for keyspace, tables in schema.items():
            output += f"{self.format_keyspace_to_markdown(keyspace, tables)}\n\n"
        return output

    def _validate_cql(self, cql: str, type: str = "SELECT") -> str:
        """
        Validates a CQL query string for basic formatting and safety checks.
        Ensures that `cql` starts with the specified type (e.g., SELECT) and does
        not contain content that could indicate CQL injection vulnerabilities.

        Args:
            cql: The CQL query string to be validated.
            type: The expected starting keyword of the query, used to verify
                that the query begins with the correct operation type
                (e.g., "SELECT", "UPDATE"). Defaults to "SELECT".

        Returns:
            The trimmed and validated CQL query string without a trailing semicolon.

        Raises:
            ValueError: If the value of `type` is not supported
            DatabaseError: If `cql` is considered unsafe
        """
        SUPPORTED_TYPES = ["SELECT"]
        if type and type.upper() not in SUPPORTED_TYPES:
            raise ValueError(
                f"""Unsupported CQL type: {type}. Supported types: 
                             {SUPPORTED_TYPES}"""
            )

        # Basic sanity checks
        cql_trimmed = cql.strip()
        if not cql_trimmed.upper().startswith(type.upper()):
            raise DatabaseError(f"CQL must start with {type.upper()}.")

        # Allow a trailing semicolon, but remove (it is optional with the Python driver)
        cql_trimmed = cql_trimmed.rstrip(";")

        # Consider content within matching quotes to be "safe"
        # Remove single-quoted strings
        cql_sanitized = re.sub(r"'.*?'", "", cql_trimmed)

        # Remove double-quoted strings
        cql_sanitized = re.sub(r'".*?"', "", cql_sanitized)

        # Find unsafe content in the remaining CQL
        if ";" in cql_sanitized:
            raise DatabaseError(
                """Potentially unsafe CQL, as it contains a ; at a 
                                place other than the end or within quotation marks."""
            )

        # The trimmed query, before modifications
        return cql_trimmed

    def _fetch_keyspaces(self, keyspaces: Optional[List[str]] = None) -> List[str]:
        """
        Fetches a list of keyspace names from the Cassandra database. The list can be
        filtered by a provided list of keyspace names or by excluding predefined
        keyspaces.

        Args:
            keyspaces: A list of keyspace names to specifically include.
                If provided and not empty, the method returns only the keyspaces
                present in this list.
                If not provided or empty, the method returns all keyspaces except those
                specified in the _exclude_keyspaces attribute.

        Returns:
            A list of keyspace names according to the filtering criteria.
        """
        all_keyspaces = self.fetch_all(
            "SELECT keyspace_name FROM system_schema.keyspaces"
        )

        # Filtering keyspaces based on 'keyspace_list' and '_exclude_keyspaces'
        filtered_keyspaces = []
        for ks in all_keyspaces:
            if not isinstance(ks, Dict):
                continue  # Skip if the row is not a dictionary.

            keyspace_name = ks["keyspace_name"]
            if keyspaces and keyspace_name in keyspaces:
                filtered_keyspaces.append(keyspace_name)
            elif not keyspaces and keyspace_name not in self._exclude_keyspaces:
                filtered_keyspaces.append(keyspace_name)

        return filtered_keyspaces

    def _format_keyspace_query(self, query: str, keyspaces: List[str]) -> str:
        # Construct IN clause for CQL query
        keyspace_in_clause = ", ".join([f"'{ks}'" for ks in keyspaces])
        return f"""{query} WHERE keyspace_name IN ({keyspace_in_clause})"""

    def _fetch_tables_data(self, keyspaces: List[str]) -> list:
        """Fetches tables schema data, filtered by a list of keyspaces.
        This method allows for efficiently fetching schema information for multiple
        keyspaces in a single operation, enabling applications to programmatically
        analyze or document the database schema.

        Args:
            keyspaces: A list of keyspace names from which to fetch tables schema data.

        Returns:
            Dictionaries of table details (keyspace name,  table name, and comment).
        """
        tables_query = self._format_keyspace_query(
            "SELECT keyspace_name, table_name, comment  FROM system_schema.tables",
            keyspaces,
        )
        return self.fetch_all(tables_query)

    def _fetch_columns_data(self, keyspaces: List[str]) -> list:
        """Fetches columns schema data, filtered by a list of keyspaces.
        This method allows for efficiently fetching schema information for multiple
        keyspaces in a single operation, enabling applications to programmatically
        analyze or document the database schema.

        Args:
            keyspaces: A list of keyspace names from which to fetch tables schema data.

        Returns:
            Dictionaries of column details (keyspace name, table name, column name,
            type, kind, and position).
        """
        tables_query = self._format_keyspace_query(
            """
                    SELECT keyspace_name, table_name, column_name, type, kind, 
                        clustering_order, position 
                    FROM system_schema.columns
                    """,
            keyspaces,
        )
        return self.fetch_all(tables_query)

    def _fetch_indexes_data(self, keyspaces: List[str]) -> list:
        """Fetches indexes schema data, filtered by a list of keyspaces.
        This method allows for efficiently fetching schema information for multiple
        keyspaces in a single operation, enabling applications to programmatically
        analyze or document the database schema.

        Args:
            keyspaces: A list of keyspace names from which to fetch tables schema data.

        Returns:
            Dictionaries of index details (keyspace name, table name, index name, kind,
            and options).
        """
        tables_query = self._format_keyspace_query(
            """
                    SELECT keyspace_name, table_name, index_name, 
                        kind, options 
                    FROM system_schema.indexes
                    """,
            keyspaces,
        )
        return self.fetch_all(tables_query)

    def _resolve_schema(
        self, keyspaces: Optional[List[str]] = None
    ) -> Dict[str, List[Table]]:
        """
        Efficiently fetches and organizes Cassandra table schema information,
        such as comments, columns, and indexes, into a dictionary mapping keyspace
        names to lists of Table objects.

        Args:
            keyspaces: An optional list of keyspace names from which to fetch tables
                schema data.

        Returns:
            A dictionary with keyspace names as keys and lists of Table objects as
            values, where each Table object is populated with schema details
            appropriate for its keyspace and table name.
        """
        if not keyspaces:
            keyspaces = self._fetch_keyspaces()

        tables_data = self._fetch_tables_data(keyspaces)
        columns_data = self._fetch_columns_data(keyspaces)
        indexes_data = self._fetch_indexes_data(keyspaces)

        keyspace_dict: dict = {}
        for table_data in tables_data:
            keyspace = table_data.keyspace_name
            table_name = table_data.table_name
            comment = table_data.comment

            if self._include_tables and table_name not in self._include_tables:
                continue

            if self._exclude_tables and table_name in self._exclude_tables:
                continue

            # Filter columns and indexes for this table
            table_columns = [
                (c.column_name, c.type)
                for c in columns_data
                if c.keyspace_name == keyspace and c.table_name == table_name
            ]

            partition_keys = [
                c.column_name
                for c in columns_data
                if c.kind == "partition_key"
                and c.keyspace_name == keyspace
                and c.table_name == table_name
            ]

            clustering_keys = [
                (c.column_name, c.clustering_order)
                for c in columns_data
                if c.kind == "clustering"
                and c.keyspace_name == keyspace
                and c.table_name == table_name
            ]

            table_indexes = [
                (c.index_name, c.kind, c.options)
                for c in indexes_data
                if c.keyspace_name == keyspace and c.table_name == table_name
            ]

            table_obj = Table(
                keyspace=keyspace,
                table_name=table_name,
                comment=comment,
                columns=table_columns,
                partition=partition_keys,
                clustering=clustering_keys,
                indexes=table_indexes,
            )

            if keyspace not in keyspace_dict:
                keyspace_dict[keyspace] = []
            keyspace_dict[keyspace].append(table_obj)

        return keyspace_dict

    @staticmethod
    def _resolve_session(
        session: Optional[Session] = None,
        cassio_init_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Optional[Session]:
        """
        Attempts to resolve and return a Session object for use in database operations.

        This function follows a specific order of precedence to determine the
        appropriate session to use:
        1. `session` parameter if given,
        2. Existing `cassio` session,
        3. A new `cassio` session derived from `cassio_init_kwargs`,
        4. `None`

        Args:
            session: An optional session to use directly.
            cassio_init_kwargs: An optional dictionary of keyword arguments to `cassio`.

        Returns:
            The resolved session object if successful, or `None` if the session
            cannot be resolved.

        Raises:
            ValueError: If `cassio_init_kwargs` is provided but is not a dictionary of
            keyword arguments.
        """

        # Prefer given session
        if session:
            return session

        # If a session is not provided, create one using cassio if available
        # dynamically import cassio to avoid circular imports
        try:
            import cassio.config
        except ImportError:
            raise ValueError(
                "cassio package not found, please install with" " `pip install cassio`"
            )

        # Use pre-existing session on cassio
        s = cassio.config.resolve_session()
        if s:
            return s

        # Try to init and return cassio session
        if cassio_init_kwargs:
            if isinstance(cassio_init_kwargs, dict):
                cassio.init(**cassio_init_kwargs)
                s = cassio.config.check_resolve_session()
                return s
            else:
                raise ValueError("cassio_init_kwargs must be a keyword dictionary")

        # return None if we're not able to resolve
        return None


class DatabaseError(Exception):
    """Exception raised for errors in the database schema.

    Attributes:
        message -- explanation of the error
    """

    def __init__(self, message: str):
        self.message = message
        super().__init__(self.message)


class Table(BaseModel):
    keyspace: str
    """The keyspace in which the table exists."""

    table_name: str
    """The name of the table."""

    comment: Optional[str] = None
    """The comment associated with the table."""

    columns: List[Tuple[str, str]] = Field(default_factory=list)
    partition: List[str] = Field(default_factory=list)
    clustering: List[Tuple[str, str]] = Field(default_factory=list)
    indexes: List[Tuple[str, str, str]] = Field(default_factory=list)

    class Config:
        frozen = True

    @root_validator()
    def check_required_fields(cls, class_values: dict) -> dict:
        if not class_values["columns"]:
            raise ValueError("non-empty column list for must be provided")
        if not class_values["partition"]:
            raise ValueError("non-empty partition list must be provided")
        return class_values

    @classmethod
    def from_database(
        cls, keyspace: str, table_name: str, db: CassandraDatabase
    ) -> Table:
        columns, partition, clustering = cls._resolve_columns(keyspace, table_name, db)
        return cls(
            keyspace=keyspace,
            table_name=table_name,
            comment=cls._resolve_comment(keyspace, table_name, db),
            columns=columns,
            partition=partition,
            clustering=clustering,
            indexes=cls._resolve_indexes(keyspace, table_name, db),
        )

    def as_markdown(
        self, include_keyspace: bool = True, header_level: Optional[int] = None
    ) -> str:
        """
        Generates a Markdown representation of the Cassandra table schema, allowing for
        customizable header levels for the table name section.

        Args:
            include_keyspace: If True, includes the keyspace in the output.
                Defaults to True.
            header_level: Specifies the markdown header level for the table name.
                If None, the table name is included without a header.
                Defaults to None (no header level).

        Returns:
            A string in Markdown format detailing the table name
            (with optional header level), keyspace (optional), comment, columns,
            partition keys, clustering keys (with optional clustering order),
            and indexes.
        """
        output = ""
        if header_level is not None:
            output += f"{'#' * header_level} "
        output += f"Table Name: {self.table_name}\n"

        if include_keyspace:
            output += f"- Keyspace: {self.keyspace}\n"
        if self.comment:
            output += f"- Comment: {self.comment}\n"

        output += "- Columns\n"
        for column, type in self.columns:
            output += f"  - {column} ({type})\n"

        output += f"- Partition Keys: ({', '.join(self.partition)})\n"
        output += "- Clustering Keys: "
        if self.clustering:
            cluster_list = []
            for column, clustering_order in self.clustering:
                if clustering_order.lower() == "none":
                    cluster_list.append(column)
                else:
                    cluster_list.append(f"{column} {clustering_order}")
            output += f"({', '.join(cluster_list)})\n"

        if self.indexes:
            output += "- Indexes\n"
            for name, kind, options in self.indexes:
                output += f"  - {name} : kind={kind}, options={options}\n"

        return output

    @staticmethod
    def _resolve_comment(
        keyspace: str, table_name: str, db: CassandraDatabase
    ) -> Optional[str]:
        result = db.run(
            f"""SELECT comment 
                FROM system_schema.tables 
                WHERE keyspace_name = '{keyspace}' 
                AND table_name = '{table_name}';""",
            fetch="one",
        )

        if isinstance(result, dict):
            comment = result.get("comment")
            if comment:
                return comment
            else:
                return None  # Default comment if none is found
        else:
            raise ValueError(
                f"""Unexpected result type from db.run: 
                             {type(result).__name__}"""
            )

    @staticmethod
    def _resolve_columns(
        keyspace: str, table_name: str, db: CassandraDatabase
    ) -> Tuple[List[Tuple[str, str]], List[str], List[Tuple[str, str]]]:
        columns = []
        partition_info = []
        cluster_info = []
        results = db.run(
            f"""SELECT column_name, type, kind, clustering_order, position 
                           FROM system_schema.columns 
                           WHERE keyspace_name = '{keyspace}' 
                           AND table_name = '{table_name}';"""
        )
        # Type check to ensure 'results' is a sequence of dictionaries.
        if not isinstance(results, Sequence):
            raise TypeError("Expected a sequence of dictionaries from 'run' method.")

        for row in results:
            if not isinstance(row, Dict):
                continue  # Skip if the row is not a dictionary.

            columns.append((row["column_name"], row["type"]))
            if row["kind"] == "partition_key":
                partition_info.append((row["column_name"], row["position"]))
            elif row["kind"] == "clustering":
                cluster_info.append(
                    (row["column_name"], row["clustering_order"], row["position"])
                )

        partition = [
            column_name for column_name, _ in sorted(partition_info, key=lambda x: x[1])
        ]

        cluster = [
            (column_name, clustering_order)
            for column_name, clustering_order, _ in sorted(
                cluster_info, key=lambda x: x[2]
            )
        ]

        return columns, partition, cluster

    @staticmethod
    def _resolve_indexes(
        keyspace: str, table_name: str, db: CassandraDatabase
    ) -> List[Tuple[str, str, str]]:
        indexes = []
        results = db.run(
            f"""SELECT index_name, kind, options 
                        FROM system_schema.indexes 
                        WHERE keyspace_name = '{keyspace}' 
                        AND table_name = '{table_name}';"""
        )

        # Type check to ensure 'results' is a sequence of dictionaries
        if not isinstance(results, Sequence):
            raise TypeError("Expected a sequence of dictionaries from 'run' method.")

        for row in results:
            if not isinstance(row, Dict):
                continue  # Skip if the row is not a dictionary.

            # Convert 'options' to string if it's not already,
            # assuming it's JSON-like and needs conversion
            index_options = row["options"]
            if not isinstance(index_options, str):
                # Assuming index_options needs to be serialized or simply converted
                index_options = str(index_options)

            indexes.append((row["index_name"], row["kind"], index_options))

        return indexes