Spaces:
Runtime error
Runtime error
File size: 5,904 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
from __future__ import annotations
from enum import Enum
from typing import TYPE_CHECKING, Any, Dict, List, Optional
from langchain_core.callbacks import (
AsyncCallbackManagerForRetrieverRun,
CallbackManagerForRetrieverRun,
)
from langchain_core.documents import Document
from langchain_core.pydantic_v1 import root_validator
from langchain_core.retrievers import BaseRetriever
if TYPE_CHECKING:
from zep_python.memory import MemorySearchResult
class SearchScope(str, Enum):
"""Which documents to search. Messages or Summaries?"""
messages = "messages"
"""Search chat history messages."""
summary = "summary"
"""Search chat history summaries."""
class SearchType(str, Enum):
"""Enumerator of the types of search to perform."""
similarity = "similarity"
"""Similarity search."""
mmr = "mmr"
"""Maximal Marginal Relevance reranking of similarity search."""
class ZepRetriever(BaseRetriever):
"""`Zep` MemoryStore Retriever.
Search your user's long-term chat history with Zep.
Zep offers both simple semantic search and Maximal Marginal Relevance (MMR)
reranking of search results.
Note: You will need to provide the user's `session_id` to use this retriever.
Args:
url: URL of your Zep server (required)
api_key: Your Zep API key (optional)
session_id: Identifies your user or a user's session (required)
top_k: Number of documents to return (default: 3, optional)
search_type: Type of search to perform (similarity / mmr) (default: similarity,
optional)
mmr_lambda: Lambda value for MMR search. Defaults to 0.5 (optional)
Zep - Fast, scalable building blocks for LLM Apps
=========
Zep is an open source platform for productionizing LLM apps. Go from a prototype
built in LangChain or LlamaIndex, or a custom app, to production in minutes without
rewriting code.
For server installation instructions, see:
https://docs.getzep.com/deployment/quickstart/
"""
zep_client: Optional[Any] = None
"""Zep client."""
url: str
"""URL of your Zep server."""
api_key: Optional[str] = None
"""Your Zep API key."""
session_id: str
"""Zep session ID."""
top_k: Optional[int]
"""Number of items to return."""
search_scope: SearchScope = SearchScope.messages
"""Which documents to search. Messages or Summaries?"""
search_type: SearchType = SearchType.similarity
"""Type of search to perform (similarity / mmr)"""
mmr_lambda: Optional[float] = None
"""Lambda value for MMR search."""
@root_validator(pre=True)
def create_client(cls, values: dict) -> dict:
try:
from zep_python import ZepClient
except ImportError:
raise ImportError(
"Could not import zep-python package. "
"Please install it with `pip install zep-python`."
)
values["zep_client"] = values.get(
"zep_client",
ZepClient(base_url=values["url"], api_key=values.get("api_key")),
)
return values
def _messages_search_result_to_doc(
self, results: List[MemorySearchResult]
) -> List[Document]:
return [
Document(
page_content=r.message.pop("content"),
metadata={"score": r.dist, **r.message},
)
for r in results
if r.message
]
def _summary_search_result_to_doc(
self, results: List[MemorySearchResult]
) -> List[Document]:
return [
Document(
page_content=r.summary.content,
metadata={
"score": r.dist,
"uuid": r.summary.uuid,
"created_at": r.summary.created_at,
"token_count": r.summary.token_count,
},
)
for r in results
if r.summary
]
def _get_relevant_documents(
self,
query: str,
*,
run_manager: CallbackManagerForRetrieverRun,
metadata: Optional[Dict[str, Any]] = None,
) -> List[Document]:
from zep_python.memory import MemorySearchPayload
if not self.zep_client:
raise RuntimeError("Zep client not initialized.")
payload = MemorySearchPayload(
text=query,
metadata=metadata,
search_scope=self.search_scope,
search_type=self.search_type,
mmr_lambda=self.mmr_lambda,
)
results: List[MemorySearchResult] = self.zep_client.memory.search_memory(
self.session_id, payload, limit=self.top_k
)
if self.search_scope == SearchScope.summary:
return self._summary_search_result_to_doc(results)
return self._messages_search_result_to_doc(results)
async def _aget_relevant_documents(
self,
query: str,
*,
run_manager: AsyncCallbackManagerForRetrieverRun,
metadata: Optional[Dict[str, Any]] = None,
) -> List[Document]:
from zep_python.memory import MemorySearchPayload
if not self.zep_client:
raise RuntimeError("Zep client not initialized.")
payload = MemorySearchPayload(
text=query,
metadata=metadata,
search_scope=self.search_scope,
search_type=self.search_type,
mmr_lambda=self.mmr_lambda,
)
results: List[MemorySearchResult] = await self.zep_client.memory.asearch_memory(
self.session_id, payload, limit=self.top_k
)
if self.search_scope == SearchScope.summary:
return self._summary_search_result_to_doc(results)
return self._messages_search_result_to_doc(results)
|