Spaces:
Runtime error
Runtime error
File size: 1,865 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
from typing import Any, Dict, List
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, root_validator
class AwaEmbeddings(BaseModel, Embeddings):
"""Embedding documents and queries with Awa DB.
Attributes:
client: The AwaEmbedding client.
model: The name of the model used for embedding.
Default is "all-mpnet-base-v2".
"""
client: Any #: :meta private:
model: str = "all-mpnet-base-v2"
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that awadb library is installed."""
try:
from awadb import AwaEmbedding
except ImportError as exc:
raise ImportError(
"Could not import awadb library. "
"Please install it with `pip install awadb`"
) from exc
values["client"] = AwaEmbedding()
return values
def set_model(self, model_name: str) -> None:
"""Set the model used for embedding.
The default model used is all-mpnet-base-v2
Args:
model_name: A string which represents the name of model.
"""
self.model = model_name
self.client.model_name = model_name
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed a list of documents using AwaEmbedding.
Args:
texts: The list of texts need to be embedded
Returns:
List of embeddings, one for each text.
"""
return self.client.EmbeddingBatch(texts)
def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using AwaEmbedding.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self.client.Embedding(text)
|