File size: 22,469 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
from __future__ import annotations

import asyncio
import functools
import json
import logging
from typing import (
    Any,
    AsyncIterator,
    Callable,
    Dict,
    Iterator,
    List,
    Mapping,
    Optional,
    Sequence,
    Type,
    Union,
    cast,
)

from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    BaseMessageChunk,
    ChatMessage,
    ChatMessageChunk,
    HumanMessage,
    HumanMessageChunk,
    SystemMessage,
    SystemMessageChunk,
    ToolMessage,
    ToolMessageChunk,
)
from langchain_core.output_parsers.openai_tools import (
    make_invalid_tool_call,
    parse_tool_call,
)
from langchain_core.outputs import (
    ChatGeneration,
    ChatGenerationChunk,
    ChatResult,
)
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
from langchain_core.runnables import Runnable
from langchain_core.tools import BaseTool
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
from langchain_core.utils.function_calling import convert_to_openai_tool
from requests.exceptions import HTTPError
from tenacity import (
    before_sleep_log,
    retry,
    retry_if_exception_type,
    stop_after_attempt,
    wait_exponential,
)

from langchain_community.llms.tongyi import (
    agenerate_with_last_element_mark,
    check_response,
    generate_with_last_element_mark,
)

logger = logging.getLogger(__name__)


def convert_dict_to_message(
    _dict: Mapping[str, Any], is_chunk: bool = False
) -> Union[BaseMessage, BaseMessageChunk]:
    """Convert a dict to a message."""
    role = _dict["role"]
    content = _dict["content"]

    if role == "user":
        return (
            HumanMessageChunk(content=content)
            if is_chunk
            else HumanMessage(content=content)
        )
    elif role == "assistant":
        tool_calls = []
        invalid_tool_calls = []
        if "tool_calls" in _dict:
            additional_kwargs = {"tool_calls": _dict["tool_calls"]}

            for index, value in enumerate(_dict["tool_calls"]):
                if is_chunk:
                    try:
                        tool_calls.append(
                            {
                                "name": value["function"].get("name"),
                                "args": value["function"].get("arguments"),
                                "id": value.get("id"),
                                # Tongyi does not respond with index,
                                # use index in the list instead
                                "index": index,
                            }
                        )
                    except KeyError:
                        pass
                else:
                    try:
                        parsed_tool = parse_tool_call(value, return_id=True)
                        if parsed_tool:
                            tool_calls.append(parsed_tool)
                    except Exception as e:
                        invalid_tool_calls.append(make_invalid_tool_call(value, str(e)))
        else:
            additional_kwargs = {}

        return (
            AIMessageChunk(
                content=content,
                additional_kwargs=additional_kwargs,
                tool_call_chunks=tool_calls,  # type: ignore[arg-type]
                id=_dict.get("id"),
            )
            if is_chunk
            else AIMessage(
                content=content,
                additional_kwargs=additional_kwargs,
                tool_calls=tool_calls,  # type: ignore[arg-type]
                invalid_tool_calls=invalid_tool_calls,
            )
        )
    elif role == "system":
        return (
            SystemMessageChunk(content=content)
            if is_chunk
            else SystemMessage(content=content)
        )
    elif role == "tool":
        additional_kwargs = {}
        if "name" in _dict:
            additional_kwargs["name"] = _dict["name"]
        return (
            ToolMessageChunk(
                content=_dict.get("content", ""),
                tool_call_id=_dict.get("tool_call_id"),  # type: ignore[arg-type]
                additional_kwargs=additional_kwargs,
            )
            if is_chunk
            else ToolMessage(
                content=_dict.get("content", ""),
                tool_call_id=_dict.get("tool_call_id"),  # type: ignore[arg-type]
                additional_kwargs=additional_kwargs,
            )
        )
    else:
        return (
            ChatMessageChunk(role=role, content=content)
            if is_chunk
            else ChatMessage(role=role, content=content)
        )


def convert_message_chunk_to_message(message_chunk: BaseMessageChunk) -> BaseMessage:
    """Convert a message chunk to a message.

    Args:
        chunk: Message chunk to convert.

    Returns:
        Message.
    """
    if not isinstance(message_chunk, BaseMessageChunk):
        return message_chunk
    # chunk classes always have the equivalent non-chunk class as their first parent
    ignore_keys = ["type"]
    if isinstance(message_chunk, AIMessageChunk):
        ignore_keys.append("tool_call_chunks")
    return message_chunk.__class__.__mro__[1](
        **{k: v for k, v in message_chunk.__dict__.items() if k not in ignore_keys}
    )


def convert_message_to_dict(message: BaseMessage) -> dict:
    """Convert a message to a dict."""

    message_dict: Dict[str, Any]
    if isinstance(message, ChatMessage):
        message_dict = {"role": message.role, "content": message.content}
    elif isinstance(message, HumanMessage):
        message_dict = {"role": "user", "content": message.content}
    elif isinstance(message, AIMessage):
        message_dict = {"role": "assistant", "content": message.content}
        if "tool_calls" in message.additional_kwargs:
            message_dict["tool_calls"] = message.additional_kwargs["tool_calls"]
    elif isinstance(message, SystemMessage):
        message_dict = {"role": "system", "content": message.content}
    elif isinstance(message, ToolMessage):
        message_dict = {
            "role": "tool",
            "tool_call_id": message.tool_call_id,
            "content": message.content,
            "name": message.name,
        }
    else:
        raise TypeError(f"Got unknown type {message}")
    return message_dict


def _create_retry_decorator(llm: ChatTongyi) -> Callable[[Any], Any]:
    min_seconds = 1
    max_seconds = 4
    # Wait 2^x * 1 second between each retry starting with
    # 4 seconds, then up to 10 seconds, then 10 seconds afterward
    return retry(
        reraise=True,
        stop=stop_after_attempt(llm.max_retries),
        wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
        retry=(retry_if_exception_type(HTTPError)),
        before_sleep=before_sleep_log(logger, logging.WARNING),
    )


class ChatTongyi(BaseChatModel):
    """Alibaba Tongyi Qwen chat models API.

    To use, you should have the ``dashscope`` python package installed,
    and set env ``DASHSCOPE_API_KEY`` with your API key, or pass
    it as a named parameter to the constructor.

    Example:
        .. code-block:: python

            from langchain_community.chat_models import ChatTongyi
            Tongyi_chat = ChatTongyi()
    """

    @property
    def lc_secrets(self) -> Dict[str, str]:
        return {"dashscope_api_key": "DASHSCOPE_API_KEY"}

    client: Any  #: :meta private:
    model_name: str = Field(default="qwen-turbo", alias="model")
    """Model name to use.
    callable multimodal model:
    - qwen-vl-v1
    - qwen-vl-chat-v1
    - qwen-audio-turbo
    - qwen-vl-plus
    - qwen-vl-max
    """
    model_kwargs: Dict[str, Any] = Field(default_factory=dict)

    top_p: float = 0.8
    """Total probability mass of tokens to consider at each step."""

    dashscope_api_key: Optional[SecretStr] = Field(None, alias="api_key")
    """Dashscope api key provide by Alibaba Cloud."""

    streaming: bool = False
    """Whether to stream the results or not."""

    max_retries: int = 10
    """Maximum number of retries to make when generating."""

    class Config:
        """Configuration for this pydantic object."""

        allow_population_by_field_name = True

    @property
    def _llm_type(self) -> str:
        """Return type of llm."""
        return "tongyi"

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that api key and python package exists in environment."""
        values["dashscope_api_key"] = convert_to_secret_str(
            get_from_dict_or_env(values, "dashscope_api_key", "DASHSCOPE_API_KEY")
        )
        try:
            import dashscope
        except ImportError:
            raise ImportError(
                "Could not import dashscope python package. "
                "Please install it with `pip install dashscope --upgrade`."
            )
        dashscope_multimodal_models = [
            "qwen-vl-v1",
            "qwen-vl-chat-v1",
            "qwen-audio-turbo",
            "qwen-vl-plus",
            "qwen-vl-max",
        ]
        if (
            values["model_name"] in dashscope_multimodal_models
            or "vl" in values["model_name"]
        ):
            try:
                values["client"] = dashscope.MultiModalConversation
            except AttributeError:
                raise ValueError(
                    "`dashscope` has no `MultiModalConversation` attribute, this is "
                    "likely due to an old version of the dashscope package. Try "
                    "upgrading it with `pip install --upgrade dashscope`."
                )
        else:
            try:
                values["client"] = dashscope.Generation
            except AttributeError:
                raise ValueError(
                    "`dashscope` has no `Generation` attribute, this is likely "
                    "due to an old version of the dashscope package. Try upgrading it "
                    "with `pip install --upgrade dashscope`."
                )
        return values

    @property
    def _default_params(self) -> Dict[str, Any]:
        """Get the default parameters for calling Tongyi Qwen API."""
        return {
            "model": self.model_name,
            "top_p": self.top_p,
            "api_key": cast(SecretStr, self.dashscope_api_key).get_secret_value(),
            "result_format": "message",
            **self.model_kwargs,
        }

    def completion_with_retry(self, **kwargs: Any) -> Any:
        """Use tenacity to retry the completion call."""
        retry_decorator = _create_retry_decorator(self)

        @retry_decorator
        def _completion_with_retry(**_kwargs: Any) -> Any:
            resp = self.client.call(**_kwargs)
            return check_response(resp)

        return _completion_with_retry(**kwargs)

    def stream_completion_with_retry(self, **kwargs: Any) -> Any:
        """Use tenacity to retry the completion call."""
        retry_decorator = _create_retry_decorator(self)

        @retry_decorator
        def _stream_completion_with_retry(**_kwargs: Any) -> Any:
            responses = self.client.call(**_kwargs)
            prev_resp = None

            for resp in responses:
                # If we are streaming without `incremental_output = True`,
                # we need to calculate the delta response manually
                if _kwargs.get("stream") and not _kwargs.get(
                    "incremental_output", False
                ):
                    if prev_resp is None:
                        delta_resp = resp
                    else:
                        delta_resp = self.subtract_client_response(resp, prev_resp)
                    prev_resp = resp
                    yield check_response(delta_resp)
                else:
                    yield check_response(resp)

        return _stream_completion_with_retry(**kwargs)

    def subtract_client_response(self, resp: Any, prev_resp: Any) -> Any:
        """Subtract prev response from curr response.

        Useful when streaming without `incremental_output = True`
        """

        resp_copy = json.loads(json.dumps(resp))
        choice = resp_copy["output"]["choices"][0]
        message = choice["message"]

        prev_resp_copy = json.loads(json.dumps(prev_resp))
        prev_choice = prev_resp_copy["output"]["choices"][0]
        prev_message = prev_choice["message"]

        message["content"] = message["content"].replace(prev_message["content"], "")

        if message.get("tool_calls"):
            for index, tool_call in enumerate(message["tool_calls"]):
                function = tool_call["function"]

                if prev_message.get("tool_calls"):
                    prev_function = prev_message["tool_calls"][index]["function"]

                    function["name"] = function["name"].replace(
                        prev_function["name"], ""
                    )
                    function["arguments"] = function["arguments"].replace(
                        prev_function["arguments"], ""
                    )

        return resp_copy

    async def astream_completion_with_retry(self, **kwargs: Any) -> Any:
        """Because the dashscope SDK doesn't provide an async API,
        we wrap `stream_generate_with_retry` with an async generator."""

        class _AioTongyiGenerator:
            def __init__(self, generator: Any):
                self.generator = generator

            def __aiter__(self) -> AsyncIterator[Any]:
                return self

            async def __anext__(self) -> Any:
                value = await asyncio.get_running_loop().run_in_executor(
                    None, self._safe_next
                )
                if value is not None:
                    return value
                else:
                    raise StopAsyncIteration

            def _safe_next(self) -> Any:
                try:
                    return next(self.generator)
                except StopIteration:
                    return None

        async for chunk in _AioTongyiGenerator(
            generator=self.stream_completion_with_retry(**kwargs)
        ):
            yield chunk

    def _generate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        generations = []
        if self.streaming:
            generation_chunk: Optional[ChatGenerationChunk] = None
            for chunk in self._stream(
                messages, stop=stop, run_manager=run_manager, **kwargs
            ):
                if generation_chunk is None:
                    generation_chunk = chunk
                else:
                    generation_chunk += chunk
            assert generation_chunk is not None
            generations.append(self._chunk_to_generation(generation_chunk))
        else:
            params: Dict[str, Any] = self._invocation_params(
                messages=messages, stop=stop, **kwargs
            )
            resp = self.completion_with_retry(**params)
            generations.append(
                ChatGeneration(**self._chat_generation_from_qwen_resp(resp))
            )
        return ChatResult(
            generations=generations,
            llm_output={
                "model_name": self.model_name,
            },
        )

    async def _agenerate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        generations = []
        if self.streaming:
            generation: Optional[ChatGenerationChunk] = None
            async for chunk in self._astream(
                messages, stop=stop, run_manager=run_manager, **kwargs
            ):
                if generation is None:
                    generation = chunk
                else:
                    generation += chunk
            assert generation is not None
            generations.append(self._chunk_to_generation(generation))
        else:
            params: Dict[str, Any] = self._invocation_params(
                messages=messages, stop=stop, **kwargs
            )
            resp = await asyncio.get_running_loop().run_in_executor(
                None,
                functools.partial(self.completion_with_retry, **params),
            )
            generations.append(
                ChatGeneration(**self._chat_generation_from_qwen_resp(resp))
            )
        return ChatResult(
            generations=generations,
            llm_output={
                "model_name": self.model_name,
            },
        )

    def _stream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> Iterator[ChatGenerationChunk]:
        params: Dict[str, Any] = self._invocation_params(
            messages=messages, stop=stop, stream=True, **kwargs
        )

        for stream_resp, is_last_chunk in generate_with_last_element_mark(
            self.stream_completion_with_retry(**params)
        ):
            choice = stream_resp["output"]["choices"][0]
            message = choice["message"]
            if (
                choice["finish_reason"] == "null"
                and message["content"] == ""
                and "tool_calls" not in message
            ):
                continue

            chunk = ChatGenerationChunk(
                **self._chat_generation_from_qwen_resp(
                    stream_resp, is_chunk=True, is_last_chunk=is_last_chunk
                )
            )
            if run_manager:
                run_manager.on_llm_new_token(chunk.text, chunk=chunk)
            yield chunk

    async def _astream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> AsyncIterator[ChatGenerationChunk]:
        params: Dict[str, Any] = self._invocation_params(
            messages=messages, stop=stop, stream=True, **kwargs
        )
        async for stream_resp, is_last_chunk in agenerate_with_last_element_mark(
            self.astream_completion_with_retry(**params)
        ):
            chunk = ChatGenerationChunk(
                **self._chat_generation_from_qwen_resp(
                    stream_resp, is_chunk=True, is_last_chunk=is_last_chunk
                )
            )
            if run_manager:
                await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
            yield chunk

    def _invocation_params(
        self, messages: List[BaseMessage], stop: Any, **kwargs: Any
    ) -> Dict[str, Any]:
        params = {**self._default_params, **kwargs}
        if stop is not None:
            params["stop"] = stop
        # According to the Tongyi official docs,
        # `incremental_output` with `tools` is not supported yet
        if params.get("stream") and not params.get("tools"):
            params["incremental_output"] = True

        message_dicts = [convert_message_to_dict(m) for m in messages]

        # And the `system` message should be the first message if present
        system_message_indices = [
            i for i, m in enumerate(message_dicts) if m["role"] == "system"
        ]
        if len(system_message_indices) == 1 and system_message_indices[0] != 0:
            raise ValueError("System message can only be the first message.")
        elif len(system_message_indices) > 1:
            raise ValueError("There can be only one system message at most.")

        params["messages"] = message_dicts

        return params

    def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
        if llm_outputs[0] is None:
            return {}
        return llm_outputs[0]

    @staticmethod
    def _chat_generation_from_qwen_resp(
        resp: Any, is_chunk: bool = False, is_last_chunk: bool = True
    ) -> Dict[str, Any]:
        # According to the response from dashscope,
        # each chunk's `generation_info` overwrites the previous one.
        # Besides, The `merge_dicts` method,
        # which is used to concatenate `generation_info` in `GenerationChunk`,
        # does not support merging of int type values.
        # Therefore, we adopt the `generation_info` of the last chunk
        # and discard the `generation_info` of the intermediate chunks.
        choice = resp["output"]["choices"][0]
        message = convert_dict_to_message(choice["message"], is_chunk=is_chunk)
        if is_last_chunk:
            return dict(
                message=message,
                generation_info=dict(
                    finish_reason=choice["finish_reason"],
                    request_id=resp["request_id"],
                    token_usage=dict(resp["usage"]),
                ),
            )
        else:
            return dict(message=message)

    @staticmethod
    def _chunk_to_generation(chunk: ChatGenerationChunk) -> ChatGeneration:
        return ChatGeneration(
            message=convert_message_chunk_to_message(chunk.message),
            generation_info=chunk.generation_info,
        )

    def bind_tools(
        self,
        tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
        **kwargs: Any,
    ) -> Runnable[LanguageModelInput, BaseMessage]:
        """Bind tool-like objects to this chat model.

        Args:
            tools: A list of tool definitions to bind to this chat model.
                Can be  a dictionary, pydantic model, callable, or BaseTool. Pydantic
                models, callables, and BaseTools will be automatically converted to
                their schema dictionary representation.
            **kwargs: Any additional parameters to pass to the
                :class:`~langchain.runnable.Runnable` constructor.
        """

        formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
        return super().bind(tools=formatted_tools, **kwargs)