Spaces:
Runtime error
Runtime error
File size: 17,794 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
import base64
import hashlib
import hmac
import json
import logging
import queue
import threading
from datetime import datetime
from queue import Queue
from time import mktime
from typing import Any, Dict, Generator, Iterator, List, Mapping, Optional, Type
from urllib.parse import urlencode, urlparse, urlunparse
from wsgiref.handlers import format_date_time
from langchain_core.callbacks import (
CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import (
BaseChatModel,
generate_from_stream,
)
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
BaseMessageChunk,
ChatMessage,
ChatMessageChunk,
HumanMessage,
HumanMessageChunk,
SystemMessage,
)
from langchain_core.outputs import (
ChatGeneration,
ChatGenerationChunk,
ChatResult,
)
from langchain_core.pydantic_v1 import Field, root_validator
from langchain_core.utils import (
get_from_dict_or_env,
get_pydantic_field_names,
)
logger = logging.getLogger(__name__)
SPARK_API_URL = "wss://spark-api.xf-yun.com/v3.5/chat"
SPARK_LLM_DOMAIN = "generalv3.5"
def _convert_message_to_dict(message: BaseMessage) -> dict:
if isinstance(message, ChatMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, HumanMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, AIMessage):
message_dict = {"role": "assistant", "content": message.content}
elif isinstance(message, SystemMessage):
message_dict = {"role": "system", "content": message.content}
else:
raise ValueError(f"Got unknown type {message}")
return message_dict
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
msg_role = _dict["role"]
msg_content = _dict["content"]
if msg_role == "user":
return HumanMessage(content=msg_content)
elif msg_role == "assistant":
content = msg_content or ""
return AIMessage(content=content)
elif msg_role == "system":
return SystemMessage(content=msg_content)
else:
return ChatMessage(content=msg_content, role=msg_role)
def _convert_delta_to_message_chunk(
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
) -> BaseMessageChunk:
msg_role = _dict["role"]
msg_content = _dict.get("content", "")
if msg_role == "user" or default_class == HumanMessageChunk:
return HumanMessageChunk(content=msg_content)
elif msg_role == "assistant" or default_class == AIMessageChunk:
return AIMessageChunk(content=msg_content)
elif msg_role or default_class == ChatMessageChunk:
return ChatMessageChunk(content=msg_content, role=msg_role)
else:
return default_class(content=msg_content) # type: ignore[call-arg]
class ChatSparkLLM(BaseChatModel):
"""iFlyTek Spark large language model.
To use, you should pass `app_id`, `api_key`, `api_secret`
as a named parameter to the constructor OR set environment
variables ``IFLYTEK_SPARK_APP_ID``, ``IFLYTEK_SPARK_API_KEY`` and
``IFLYTEK_SPARK_API_SECRET``
Example:
.. code-block:: python
client = ChatSparkLLM(
spark_app_id="<app_id>",
spark_api_key="<api_key>",
spark_api_secret="<api_secret>"
)
Extra infos:
1. Get app_id, api_key, api_secret from the iFlyTek Open Platform Console:
https://console.xfyun.cn/services/bm35
2. By default, iFlyTek Spark LLM V3.5 is invoked.
If you need to invoke other versions, please configure the corresponding
parameters(spark_api_url and spark_llm_domain) according to the document:
https://www.xfyun.cn/doc/spark/Web.html
3. It is necessary to ensure that the app_id used has a license for
the corresponding model version.
4. If you encounter problems during use, try getting help at:
https://console.xfyun.cn/workorder/commit
"""
@classmethod
def is_lc_serializable(cls) -> bool:
"""Return whether this model can be serialized by Langchain."""
return False
@property
def lc_secrets(self) -> Dict[str, str]:
return {
"spark_app_id": "IFLYTEK_SPARK_APP_ID",
"spark_api_key": "IFLYTEK_SPARK_API_KEY",
"spark_api_secret": "IFLYTEK_SPARK_API_SECRET",
"spark_api_url": "IFLYTEK_SPARK_API_URL",
"spark_llm_domain": "IFLYTEK_SPARK_LLM_DOMAIN",
}
client: Any = None #: :meta private:
spark_app_id: Optional[str] = Field(default=None, alias="app_id")
"""Automatically inferred from env var `IFLYTEK_SPARK_APP_ID`
if not provided."""
spark_api_key: Optional[str] = Field(default=None, alias="api_key")
"""Automatically inferred from env var `IFLYTEK_SPARK_API_KEY`
if not provided."""
spark_api_secret: Optional[str] = Field(default=None, alias="api_secret")
"""Automatically inferred from env var `IFLYTEK_SPARK_API_SECRET`
if not provided."""
spark_api_url: Optional[str] = Field(default=None, alias="api_url")
"""Base URL path for API requests, leave blank if not using a proxy or service
emulator."""
spark_llm_domain: Optional[str] = Field(default=None, alias="model")
"""Model name to use."""
spark_user_id: str = "lc_user"
streaming: bool = False
"""Whether to stream the results or not."""
request_timeout: int = Field(30, alias="timeout")
"""request timeout for chat http requests"""
temperature: float = Field(default=0.5)
"""What sampling temperature to use."""
top_k: int = 4
"""What search sampling control to use."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for API call not explicitly specified."""
class Config:
"""Configuration for this pydantic object."""
allow_population_by_field_name = True
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
if field_name not in all_required_field_names:
logger.warning(
f"""WARNING! {field_name} is not default parameter.
{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
if invalid_model_kwargs:
raise ValueError(
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
f"Instead they were passed in as part of `model_kwargs` parameter."
)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
values["spark_app_id"] = get_from_dict_or_env(
values,
"spark_app_id",
"IFLYTEK_SPARK_APP_ID",
)
values["spark_api_key"] = get_from_dict_or_env(
values,
"spark_api_key",
"IFLYTEK_SPARK_API_KEY",
)
values["spark_api_secret"] = get_from_dict_or_env(
values,
"spark_api_secret",
"IFLYTEK_SPARK_API_SECRET",
)
values["spark_api_url"] = get_from_dict_or_env(
values,
"spark_api_url",
"IFLYTEK_SPARK_API_URL",
SPARK_API_URL,
)
values["spark_llm_domain"] = get_from_dict_or_env(
values,
"spark_llm_domain",
"IFLYTEK_SPARK_LLM_DOMAIN",
SPARK_LLM_DOMAIN,
)
# put extra params into model_kwargs
values["model_kwargs"]["temperature"] = values["temperature"] or cls.temperature
values["model_kwargs"]["top_k"] = values["top_k"] or cls.top_k
values["client"] = _SparkLLMClient(
app_id=values["spark_app_id"],
api_key=values["spark_api_key"],
api_secret=values["spark_api_secret"],
api_url=values["spark_api_url"],
spark_domain=values["spark_llm_domain"],
model_kwargs=values["model_kwargs"],
)
return values
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
default_chunk_class = AIMessageChunk
self.client.arun(
[_convert_message_to_dict(m) for m in messages],
self.spark_user_id,
self.model_kwargs,
self.streaming,
)
for content in self.client.subscribe(timeout=self.request_timeout):
if "data" not in content:
continue
delta = content["data"]
chunk = _convert_delta_to_message_chunk(delta, default_chunk_class)
cg_chunk = ChatGenerationChunk(message=chunk)
if run_manager:
run_manager.on_llm_new_token(str(chunk.content), chunk=cg_chunk)
yield cg_chunk
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
if self.streaming:
stream_iter = self._stream(
messages=messages, stop=stop, run_manager=run_manager, **kwargs
)
return generate_from_stream(stream_iter)
self.client.arun(
[_convert_message_to_dict(m) for m in messages],
self.spark_user_id,
self.model_kwargs,
False,
)
completion = {}
llm_output = {}
for content in self.client.subscribe(timeout=self.request_timeout):
if "usage" in content:
llm_output["token_usage"] = content["usage"]
if "data" not in content:
continue
completion = content["data"]
message = _convert_dict_to_message(completion)
generations = [ChatGeneration(message=message)]
return ChatResult(generations=generations, llm_output=llm_output)
@property
def _llm_type(self) -> str:
return "spark-llm-chat"
class _SparkLLMClient:
"""
Use websocket-client to call the SparkLLM interface provided by Xfyun,
which is the iFlyTek's open platform for AI capabilities
"""
def __init__(
self,
app_id: str,
api_key: str,
api_secret: str,
api_url: Optional[str] = None,
spark_domain: Optional[str] = None,
model_kwargs: Optional[dict] = None,
):
try:
import websocket
self.websocket_client = websocket
except ImportError:
raise ImportError(
"Could not import websocket client python package. "
"Please install it with `pip install websocket-client`."
)
self.api_url = SPARK_API_URL if not api_url else api_url
self.app_id = app_id
self.model_kwargs = model_kwargs
self.spark_domain = spark_domain or SPARK_LLM_DOMAIN
self.queue: Queue[Dict] = Queue()
self.blocking_message = {"content": "", "role": "assistant"}
self.api_key = api_key
self.api_secret = api_secret
@staticmethod
def _create_url(api_url: str, api_key: str, api_secret: str) -> str:
"""
Generate a request url with an api key and an api secret.
"""
# generate timestamp by RFC1123
date = format_date_time(mktime(datetime.now().timetuple()))
# urlparse
parsed_url = urlparse(api_url)
host = parsed_url.netloc
path = parsed_url.path
signature_origin = f"host: {host}\ndate: {date}\nGET {path} HTTP/1.1"
# encrypt using hmac-sha256
signature_sha = hmac.new(
api_secret.encode("utf-8"),
signature_origin.encode("utf-8"),
digestmod=hashlib.sha256,
).digest()
signature_sha_base64 = base64.b64encode(signature_sha).decode(encoding="utf-8")
authorization_origin = f'api_key="{api_key}", algorithm="hmac-sha256", \
headers="host date request-line", signature="{signature_sha_base64}"'
authorization = base64.b64encode(authorization_origin.encode("utf-8")).decode(
encoding="utf-8"
)
# generate url
params_dict = {"authorization": authorization, "date": date, "host": host}
encoded_params = urlencode(params_dict)
url = urlunparse(
(
parsed_url.scheme,
parsed_url.netloc,
parsed_url.path,
parsed_url.params,
encoded_params,
parsed_url.fragment,
)
)
return url
def run(
self,
messages: List[Dict],
user_id: str,
model_kwargs: Optional[dict] = None,
streaming: bool = False,
) -> None:
self.websocket_client.enableTrace(False)
ws = self.websocket_client.WebSocketApp(
_SparkLLMClient._create_url(
self.api_url,
self.api_key,
self.api_secret,
),
on_message=self.on_message,
on_error=self.on_error,
on_close=self.on_close,
on_open=self.on_open,
)
ws.messages = messages # type: ignore[attr-defined]
ws.user_id = user_id # type: ignore[attr-defined]
ws.model_kwargs = self.model_kwargs if model_kwargs is None else model_kwargs # type: ignore[attr-defined]
ws.streaming = streaming # type: ignore[attr-defined]
ws.run_forever()
def arun(
self,
messages: List[Dict],
user_id: str,
model_kwargs: Optional[dict] = None,
streaming: bool = False,
) -> threading.Thread:
ws_thread = threading.Thread(
target=self.run,
args=(
messages,
user_id,
model_kwargs,
streaming,
),
)
ws_thread.start()
return ws_thread
def on_error(self, ws: Any, error: Optional[Any]) -> None:
self.queue.put({"error": error})
ws.close()
def on_close(self, ws: Any, close_status_code: int, close_reason: str) -> None:
logger.debug(
{
"log": {
"close_status_code": close_status_code,
"close_reason": close_reason,
}
}
)
self.queue.put({"done": True})
def on_open(self, ws: Any) -> None:
self.blocking_message = {"content": "", "role": "assistant"}
data = json.dumps(
self.gen_params(
messages=ws.messages, user_id=ws.user_id, model_kwargs=ws.model_kwargs
)
)
ws.send(data)
def on_message(self, ws: Any, message: str) -> None:
data = json.loads(message)
code = data["header"]["code"]
if code != 0:
self.queue.put(
{"error": f"Code: {code}, Error: {data['header']['message']}"}
)
ws.close()
else:
choices = data["payload"]["choices"]
status = choices["status"]
content = choices["text"][0]["content"]
if ws.streaming:
self.queue.put({"data": choices["text"][0]})
else:
self.blocking_message["content"] += content
if status == 2:
if not ws.streaming:
self.queue.put({"data": self.blocking_message})
usage_data = (
data.get("payload", {}).get("usage", {}).get("text", {})
if data
else {}
)
self.queue.put({"usage": usage_data})
ws.close()
def gen_params(
self, messages: list, user_id: str, model_kwargs: Optional[dict] = None
) -> dict:
data: Dict = {
"header": {"app_id": self.app_id, "uid": user_id},
"parameter": {"chat": {"domain": self.spark_domain}},
"payload": {"message": {"text": messages}},
}
if model_kwargs:
data["parameter"]["chat"].update(model_kwargs)
logger.debug(f"Spark Request Parameters: {data}")
return data
def subscribe(self, timeout: Optional[int] = 30) -> Generator[Dict, None, None]:
while True:
try:
content = self.queue.get(timeout=timeout)
except queue.Empty as _:
raise TimeoutError(
f"SparkLLMClient wait LLM api response timeout {timeout} seconds"
)
if "error" in content:
raise ConnectionError(content["error"])
if "usage" in content:
yield content
continue
if "done" in content:
break
if "data" not in content:
break
yield content
|