File size: 17,794 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
import base64
import hashlib
import hmac
import json
import logging
import queue
import threading
from datetime import datetime
from queue import Queue
from time import mktime
from typing import Any, Dict, Generator, Iterator, List, Mapping, Optional, Type
from urllib.parse import urlencode, urlparse, urlunparse
from wsgiref.handlers import format_date_time

from langchain_core.callbacks import (
    CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import (
    BaseChatModel,
    generate_from_stream,
)
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    BaseMessageChunk,
    ChatMessage,
    ChatMessageChunk,
    HumanMessage,
    HumanMessageChunk,
    SystemMessage,
)
from langchain_core.outputs import (
    ChatGeneration,
    ChatGenerationChunk,
    ChatResult,
)
from langchain_core.pydantic_v1 import Field, root_validator
from langchain_core.utils import (
    get_from_dict_or_env,
    get_pydantic_field_names,
)

logger = logging.getLogger(__name__)

SPARK_API_URL = "wss://spark-api.xf-yun.com/v3.5/chat"
SPARK_LLM_DOMAIN = "generalv3.5"


def _convert_message_to_dict(message: BaseMessage) -> dict:
    if isinstance(message, ChatMessage):
        message_dict = {"role": "user", "content": message.content}
    elif isinstance(message, HumanMessage):
        message_dict = {"role": "user", "content": message.content}
    elif isinstance(message, AIMessage):
        message_dict = {"role": "assistant", "content": message.content}
    elif isinstance(message, SystemMessage):
        message_dict = {"role": "system", "content": message.content}
    else:
        raise ValueError(f"Got unknown type {message}")

    return message_dict


def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
    msg_role = _dict["role"]
    msg_content = _dict["content"]
    if msg_role == "user":
        return HumanMessage(content=msg_content)
    elif msg_role == "assistant":
        content = msg_content or ""
        return AIMessage(content=content)
    elif msg_role == "system":
        return SystemMessage(content=msg_content)
    else:
        return ChatMessage(content=msg_content, role=msg_role)


def _convert_delta_to_message_chunk(
    _dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
) -> BaseMessageChunk:
    msg_role = _dict["role"]
    msg_content = _dict.get("content", "")
    if msg_role == "user" or default_class == HumanMessageChunk:
        return HumanMessageChunk(content=msg_content)
    elif msg_role == "assistant" or default_class == AIMessageChunk:
        return AIMessageChunk(content=msg_content)
    elif msg_role or default_class == ChatMessageChunk:
        return ChatMessageChunk(content=msg_content, role=msg_role)
    else:
        return default_class(content=msg_content)  # type: ignore[call-arg]


class ChatSparkLLM(BaseChatModel):
    """iFlyTek Spark large language model.

    To use, you should pass `app_id`, `api_key`, `api_secret`
    as a named parameter to the constructor OR set environment
    variables ``IFLYTEK_SPARK_APP_ID``, ``IFLYTEK_SPARK_API_KEY`` and
    ``IFLYTEK_SPARK_API_SECRET``

    Example:
        .. code-block:: python

        client = ChatSparkLLM(
            spark_app_id="<app_id>",
            spark_api_key="<api_key>",
            spark_api_secret="<api_secret>"
        )

    Extra infos:
        1. Get app_id, api_key, api_secret from the iFlyTek Open Platform Console:
            https://console.xfyun.cn/services/bm35
        2. By default, iFlyTek Spark LLM V3.5 is invoked.
            If you need to invoke other versions, please configure the corresponding
            parameters(spark_api_url and spark_llm_domain) according to the document:
            https://www.xfyun.cn/doc/spark/Web.html
        3. It is necessary to ensure that the app_id used has a license for
            the corresponding model version.
        4. If you encounter problems during use, try getting help at:
            https://console.xfyun.cn/workorder/commit
    """

    @classmethod
    def is_lc_serializable(cls) -> bool:
        """Return whether this model can be serialized by Langchain."""
        return False

    @property
    def lc_secrets(self) -> Dict[str, str]:
        return {
            "spark_app_id": "IFLYTEK_SPARK_APP_ID",
            "spark_api_key": "IFLYTEK_SPARK_API_KEY",
            "spark_api_secret": "IFLYTEK_SPARK_API_SECRET",
            "spark_api_url": "IFLYTEK_SPARK_API_URL",
            "spark_llm_domain": "IFLYTEK_SPARK_LLM_DOMAIN",
        }

    client: Any = None  #: :meta private:
    spark_app_id: Optional[str] = Field(default=None, alias="app_id")
    """Automatically inferred from env var `IFLYTEK_SPARK_APP_ID` 
        if not provided."""
    spark_api_key: Optional[str] = Field(default=None, alias="api_key")
    """Automatically inferred from env var `IFLYTEK_SPARK_API_KEY` 
        if not provided."""
    spark_api_secret: Optional[str] = Field(default=None, alias="api_secret")
    """Automatically inferred from env var `IFLYTEK_SPARK_API_SECRET` 
        if not provided."""
    spark_api_url: Optional[str] = Field(default=None, alias="api_url")
    """Base URL path for API requests, leave blank if not using a proxy or service 
        emulator."""
    spark_llm_domain: Optional[str] = Field(default=None, alias="model")
    """Model name to use."""
    spark_user_id: str = "lc_user"
    streaming: bool = False
    """Whether to stream the results or not."""
    request_timeout: int = Field(30, alias="timeout")
    """request timeout for chat http requests"""
    temperature: float = Field(default=0.5)
    """What sampling temperature to use."""
    top_k: int = 4
    """What search sampling control to use."""
    model_kwargs: Dict[str, Any] = Field(default_factory=dict)
    """Holds any model parameters valid for API call not explicitly specified."""

    class Config:
        """Configuration for this pydantic object."""

        allow_population_by_field_name = True

    @root_validator(pre=True)
    def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
        """Build extra kwargs from additional params that were passed in."""
        all_required_field_names = get_pydantic_field_names(cls)
        extra = values.get("model_kwargs", {})
        for field_name in list(values):
            if field_name in extra:
                raise ValueError(f"Found {field_name} supplied twice.")
            if field_name not in all_required_field_names:
                logger.warning(
                    f"""WARNING! {field_name} is not default parameter.
                    {field_name} was transferred to model_kwargs.
                    Please confirm that {field_name} is what you intended."""
                )
                extra[field_name] = values.pop(field_name)

        invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
        if invalid_model_kwargs:
            raise ValueError(
                f"Parameters {invalid_model_kwargs} should be specified explicitly. "
                f"Instead they were passed in as part of `model_kwargs` parameter."
            )

        values["model_kwargs"] = extra

        return values

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        values["spark_app_id"] = get_from_dict_or_env(
            values,
            "spark_app_id",
            "IFLYTEK_SPARK_APP_ID",
        )
        values["spark_api_key"] = get_from_dict_or_env(
            values,
            "spark_api_key",
            "IFLYTEK_SPARK_API_KEY",
        )
        values["spark_api_secret"] = get_from_dict_or_env(
            values,
            "spark_api_secret",
            "IFLYTEK_SPARK_API_SECRET",
        )
        values["spark_api_url"] = get_from_dict_or_env(
            values,
            "spark_api_url",
            "IFLYTEK_SPARK_API_URL",
            SPARK_API_URL,
        )
        values["spark_llm_domain"] = get_from_dict_or_env(
            values,
            "spark_llm_domain",
            "IFLYTEK_SPARK_LLM_DOMAIN",
            SPARK_LLM_DOMAIN,
        )
        # put extra params into model_kwargs
        values["model_kwargs"]["temperature"] = values["temperature"] or cls.temperature
        values["model_kwargs"]["top_k"] = values["top_k"] or cls.top_k

        values["client"] = _SparkLLMClient(
            app_id=values["spark_app_id"],
            api_key=values["spark_api_key"],
            api_secret=values["spark_api_secret"],
            api_url=values["spark_api_url"],
            spark_domain=values["spark_llm_domain"],
            model_kwargs=values["model_kwargs"],
        )
        return values

    def _stream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> Iterator[ChatGenerationChunk]:
        default_chunk_class = AIMessageChunk

        self.client.arun(
            [_convert_message_to_dict(m) for m in messages],
            self.spark_user_id,
            self.model_kwargs,
            self.streaming,
        )
        for content in self.client.subscribe(timeout=self.request_timeout):
            if "data" not in content:
                continue
            delta = content["data"]
            chunk = _convert_delta_to_message_chunk(delta, default_chunk_class)
            cg_chunk = ChatGenerationChunk(message=chunk)
            if run_manager:
                run_manager.on_llm_new_token(str(chunk.content), chunk=cg_chunk)
            yield cg_chunk

    def _generate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        if self.streaming:
            stream_iter = self._stream(
                messages=messages, stop=stop, run_manager=run_manager, **kwargs
            )
            return generate_from_stream(stream_iter)

        self.client.arun(
            [_convert_message_to_dict(m) for m in messages],
            self.spark_user_id,
            self.model_kwargs,
            False,
        )
        completion = {}
        llm_output = {}
        for content in self.client.subscribe(timeout=self.request_timeout):
            if "usage" in content:
                llm_output["token_usage"] = content["usage"]
            if "data" not in content:
                continue
            completion = content["data"]
        message = _convert_dict_to_message(completion)
        generations = [ChatGeneration(message=message)]
        return ChatResult(generations=generations, llm_output=llm_output)

    @property
    def _llm_type(self) -> str:
        return "spark-llm-chat"


class _SparkLLMClient:
    """
    Use websocket-client to call the SparkLLM interface provided by Xfyun,
    which is the iFlyTek's open platform for AI capabilities
    """

    def __init__(
        self,
        app_id: str,
        api_key: str,
        api_secret: str,
        api_url: Optional[str] = None,
        spark_domain: Optional[str] = None,
        model_kwargs: Optional[dict] = None,
    ):
        try:
            import websocket

            self.websocket_client = websocket
        except ImportError:
            raise ImportError(
                "Could not import websocket client python package. "
                "Please install it with `pip install websocket-client`."
            )

        self.api_url = SPARK_API_URL if not api_url else api_url
        self.app_id = app_id
        self.model_kwargs = model_kwargs
        self.spark_domain = spark_domain or SPARK_LLM_DOMAIN
        self.queue: Queue[Dict] = Queue()
        self.blocking_message = {"content": "", "role": "assistant"}
        self.api_key = api_key
        self.api_secret = api_secret

    @staticmethod
    def _create_url(api_url: str, api_key: str, api_secret: str) -> str:
        """
        Generate a request url with an api key and an api secret.
        """
        # generate timestamp by RFC1123
        date = format_date_time(mktime(datetime.now().timetuple()))

        # urlparse
        parsed_url = urlparse(api_url)
        host = parsed_url.netloc
        path = parsed_url.path

        signature_origin = f"host: {host}\ndate: {date}\nGET {path} HTTP/1.1"

        # encrypt using hmac-sha256
        signature_sha = hmac.new(
            api_secret.encode("utf-8"),
            signature_origin.encode("utf-8"),
            digestmod=hashlib.sha256,
        ).digest()

        signature_sha_base64 = base64.b64encode(signature_sha).decode(encoding="utf-8")

        authorization_origin = f'api_key="{api_key}", algorithm="hmac-sha256", \
        headers="host date request-line", signature="{signature_sha_base64}"'
        authorization = base64.b64encode(authorization_origin.encode("utf-8")).decode(
            encoding="utf-8"
        )

        # generate url
        params_dict = {"authorization": authorization, "date": date, "host": host}
        encoded_params = urlencode(params_dict)
        url = urlunparse(
            (
                parsed_url.scheme,
                parsed_url.netloc,
                parsed_url.path,
                parsed_url.params,
                encoded_params,
                parsed_url.fragment,
            )
        )
        return url

    def run(
        self,
        messages: List[Dict],
        user_id: str,
        model_kwargs: Optional[dict] = None,
        streaming: bool = False,
    ) -> None:
        self.websocket_client.enableTrace(False)
        ws = self.websocket_client.WebSocketApp(
            _SparkLLMClient._create_url(
                self.api_url,
                self.api_key,
                self.api_secret,
            ),
            on_message=self.on_message,
            on_error=self.on_error,
            on_close=self.on_close,
            on_open=self.on_open,
        )
        ws.messages = messages  # type: ignore[attr-defined]
        ws.user_id = user_id  # type: ignore[attr-defined]
        ws.model_kwargs = self.model_kwargs if model_kwargs is None else model_kwargs  # type: ignore[attr-defined]
        ws.streaming = streaming  # type: ignore[attr-defined]
        ws.run_forever()

    def arun(
        self,
        messages: List[Dict],
        user_id: str,
        model_kwargs: Optional[dict] = None,
        streaming: bool = False,
    ) -> threading.Thread:
        ws_thread = threading.Thread(
            target=self.run,
            args=(
                messages,
                user_id,
                model_kwargs,
                streaming,
            ),
        )
        ws_thread.start()
        return ws_thread

    def on_error(self, ws: Any, error: Optional[Any]) -> None:
        self.queue.put({"error": error})
        ws.close()

    def on_close(self, ws: Any, close_status_code: int, close_reason: str) -> None:
        logger.debug(
            {
                "log": {
                    "close_status_code": close_status_code,
                    "close_reason": close_reason,
                }
            }
        )
        self.queue.put({"done": True})

    def on_open(self, ws: Any) -> None:
        self.blocking_message = {"content": "", "role": "assistant"}
        data = json.dumps(
            self.gen_params(
                messages=ws.messages, user_id=ws.user_id, model_kwargs=ws.model_kwargs
            )
        )
        ws.send(data)

    def on_message(self, ws: Any, message: str) -> None:
        data = json.loads(message)
        code = data["header"]["code"]
        if code != 0:
            self.queue.put(
                {"error": f"Code: {code}, Error: {data['header']['message']}"}
            )
            ws.close()
        else:
            choices = data["payload"]["choices"]
            status = choices["status"]
            content = choices["text"][0]["content"]
            if ws.streaming:
                self.queue.put({"data": choices["text"][0]})
            else:
                self.blocking_message["content"] += content
            if status == 2:
                if not ws.streaming:
                    self.queue.put({"data": self.blocking_message})
                usage_data = (
                    data.get("payload", {}).get("usage", {}).get("text", {})
                    if data
                    else {}
                )
                self.queue.put({"usage": usage_data})
                ws.close()

    def gen_params(
        self, messages: list, user_id: str, model_kwargs: Optional[dict] = None
    ) -> dict:
        data: Dict = {
            "header": {"app_id": self.app_id, "uid": user_id},
            "parameter": {"chat": {"domain": self.spark_domain}},
            "payload": {"message": {"text": messages}},
        }

        if model_kwargs:
            data["parameter"]["chat"].update(model_kwargs)
        logger.debug(f"Spark Request Parameters: {data}")
        return data

    def subscribe(self, timeout: Optional[int] = 30) -> Generator[Dict, None, None]:
        while True:
            try:
                content = self.queue.get(timeout=timeout)
            except queue.Empty as _:
                raise TimeoutError(
                    f"SparkLLMClient wait LLM api response timeout {timeout} seconds"
                )
            if "error" in content:
                raise ConnectionError(content["error"])
            if "usage" in content:
                yield content
                continue
            if "done" in content:
                break
            if "data" not in content:
                break
            yield content