File size: 6,166 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
"""MLX Chat Wrapper."""

from typing import Any, Iterator, List, Optional

from langchain_core.callbacks.manager import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    HumanMessage,
    SystemMessage,
)
from langchain_core.outputs import (
    ChatGeneration,
    ChatGenerationChunk,
    ChatResult,
    LLMResult,
)

from langchain_community.llms.mlx_pipeline import MLXPipeline

DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful, and honest assistant."""


class ChatMLX(BaseChatModel):
    """MLX chat models.

    Works with `MLXPipeline` LLM.

    To use, you should have the ``mlx-lm`` python package installed.

    Example:
        .. code-block:: python

            from langchain_community.chat_models import chatMLX
            from langchain_community.llms import MLXPipeline

            llm = MLXPipeline.from_model_id(
                model_id="mlx-community/quantized-gemma-2b-it",
            )
            chat = chatMLX(llm=llm)

    """

    llm: MLXPipeline
    system_message: SystemMessage = SystemMessage(content=DEFAULT_SYSTEM_PROMPT)
    tokenizer: Any = None

    def __init__(self, **kwargs: Any):
        super().__init__(**kwargs)
        self.tokenizer = self.llm.tokenizer

    def _generate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        llm_input = self._to_chat_prompt(messages)
        llm_result = self.llm._generate(
            prompts=[llm_input], stop=stop, run_manager=run_manager, **kwargs
        )
        return self._to_chat_result(llm_result)

    async def _agenerate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        llm_input = self._to_chat_prompt(messages)
        llm_result = await self.llm._agenerate(
            prompts=[llm_input], stop=stop, run_manager=run_manager, **kwargs
        )
        return self._to_chat_result(llm_result)

    def _to_chat_prompt(
        self,
        messages: List[BaseMessage],
        tokenize: bool = False,
        return_tensors: Optional[str] = None,
    ) -> str:
        """Convert a list of messages into a prompt format expected by wrapped LLM."""
        if not messages:
            raise ValueError("At least one HumanMessage must be provided!")

        if not isinstance(messages[-1], HumanMessage):
            raise ValueError("Last message must be a HumanMessage!")

        messages_dicts = [self._to_chatml_format(m) for m in messages]

        return self.tokenizer.apply_chat_template(
            messages_dicts,
            tokenize=tokenize,
            add_generation_prompt=True,
            return_tensors=return_tensors,
        )

    def _to_chatml_format(self, message: BaseMessage) -> dict:
        """Convert LangChain message to ChatML format."""

        if isinstance(message, SystemMessage):
            role = "system"
        elif isinstance(message, AIMessage):
            role = "assistant"
        elif isinstance(message, HumanMessage):
            role = "user"
        else:
            raise ValueError(f"Unknown message type: {type(message)}")

        return {"role": role, "content": message.content}

    @staticmethod
    def _to_chat_result(llm_result: LLMResult) -> ChatResult:
        chat_generations = []

        for g in llm_result.generations[0]:
            chat_generation = ChatGeneration(
                message=AIMessage(content=g.text), generation_info=g.generation_info
            )
            chat_generations.append(chat_generation)

        return ChatResult(
            generations=chat_generations, llm_output=llm_result.llm_output
        )

    @property
    def _llm_type(self) -> str:
        return "mlx-chat-wrapper"

    def _stream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> Iterator[ChatGenerationChunk]:
        import mlx.core as mx
        from mlx_lm.utils import generate_step

        try:
            import mlx.core as mx
            from mlx_lm.utils import generate_step

        except ImportError:
            raise ImportError(
                "Could not import mlx_lm python package. "
                "Please install it with `pip install mlx_lm`."
            )
        model_kwargs = kwargs.get("model_kwargs", self.llm.pipeline_kwargs)
        temp: float = model_kwargs.get("temp", 0.0)
        max_new_tokens: int = model_kwargs.get("max_tokens", 100)
        repetition_penalty: Optional[float] = model_kwargs.get(
            "repetition_penalty", None
        )
        repetition_context_size: Optional[int] = model_kwargs.get(
            "repetition_context_size", None
        )

        llm_input = self._to_chat_prompt(messages, tokenize=True, return_tensors="np")

        prompt_tokens = mx.array(llm_input[0])

        eos_token_id = self.tokenizer.eos_token_id

        for (token, prob), n in zip(
            generate_step(
                prompt_tokens,
                self.llm.model,
                temp,
                repetition_penalty,
                repetition_context_size,
            ),
            range(max_new_tokens),
        ):
            # identify text to yield
            text: Optional[str] = None
            text = self.tokenizer.decode(token.item())

            # yield text, if any
            if text:
                chunk = ChatGenerationChunk(message=AIMessageChunk(content=text))
                yield chunk
                if run_manager:
                    run_manager.on_llm_new_token(text, chunk=chunk)

            # break if stop sequence found
            if token == eos_token_id or (stop is not None and text in stop):
                break