File size: 13,406 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import json
from http import HTTPStatus
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional, Union

import requests
from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    HumanMessage,
    SystemMessage,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import Field
from requests import Response
from requests.exceptions import HTTPError


class MaritalkHTTPError(HTTPError):
    def __init__(self, request_obj: Response) -> None:
        self.request_obj = request_obj
        try:
            response_json = request_obj.json()
            if "detail" in response_json:
                api_message = response_json["detail"]
            elif "message" in response_json:
                api_message = response_json["message"]
            else:
                api_message = response_json
        except Exception:
            api_message = request_obj.text

        self.message = api_message
        self.status_code = request_obj.status_code

    def __str__(self) -> str:
        status_code_meaning = HTTPStatus(self.status_code).phrase
        formatted_message = f"HTTP Error: {self.status_code} - {status_code_meaning}"
        formatted_message += f"\nDetail: {self.message}"
        return formatted_message


class ChatMaritalk(BaseChatModel):
    """`MariTalk` Chat models API.

    This class allows interacting with the MariTalk chatbot API.
    To use it, you must provide an API key either through the constructor.

    Example:
        .. code-block:: python

            from langchain_community.chat_models import ChatMaritalk
            chat = ChatMaritalk(api_key="your_api_key_here")
    """

    api_key: str
    """Your MariTalk API key."""

    model: str
    """Chose one of the available models: 
    - `sabia-2-medium`
    - `sabia-2-small`
    - `sabia-2-medium-2024-03-13`
    - `sabia-2-small-2024-03-13`
    - `maritalk-2024-01-08` (deprecated)"""

    temperature: float = Field(default=0.7, gt=0.0, lt=1.0)
    """Run inference with this temperature. 
    Must be in the closed interval [0.0, 1.0]."""

    max_tokens: int = Field(default=512, gt=0)
    """The maximum number of tokens to generate in the reply."""

    do_sample: bool = Field(default=True)
    """Whether or not to use sampling; use `True` to enable."""

    top_p: float = Field(default=0.95, gt=0.0, lt=1.0)
    """Nucleus sampling parameter controlling the size of 
    the probability mass considered for sampling."""

    @property
    def _llm_type(self) -> str:
        """Identifies the LLM type as 'maritalk'."""
        return "maritalk"

    def parse_messages_for_model(
        self, messages: List[BaseMessage]
    ) -> List[Dict[str, Union[str, List[Union[str, Dict[Any, Any]]]]]]:
        """
        Parses messages from LangChain's format to the format expected by
        the MariTalk API.

        Parameters:
            messages (List[BaseMessage]): A list of messages in LangChain
            format to be parsed.

        Returns:
            A list of messages formatted for the MariTalk API.
        """
        parsed_messages = []

        for message in messages:
            if isinstance(message, HumanMessage):
                role = "user"
            elif isinstance(message, AIMessage):
                role = "assistant"
            elif isinstance(message, SystemMessage):
                role = "system"

            parsed_messages.append({"role": role, "content": message.content})
        return parsed_messages

    def _call(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> str:
        """
        Sends the parsed messages to the MariTalk API and returns the generated
        response or an error message.

        This method makes an HTTP POST request to the MariTalk API with the
        provided messages and other parameters.
        If the request is successful and the API returns a response,
        this method returns a string containing the answer.
        If the request is rate-limited or encounters another error,
        it returns a string with the error message.

        Parameters:
            messages (List[BaseMessage]): Messages to send to the model.
            stop (Optional[List[str]]): Tokens that will signal the model
                to stop generating further tokens.

        Returns:
            str: If the API call is successful, returns the answer.
                 If an error occurs (e.g., rate limiting), returns a string
                 describing the error.
        """
        url = "https://chat.maritaca.ai/api/chat/inference"
        headers = {"authorization": f"Key {self.api_key}"}
        stopping_tokens = stop if stop is not None else []

        parsed_messages = self.parse_messages_for_model(messages)

        data = {
            "messages": parsed_messages,
            "model": self.model,
            "do_sample": self.do_sample,
            "max_tokens": self.max_tokens,
            "temperature": self.temperature,
            "top_p": self.top_p,
            "stopping_tokens": stopping_tokens,
            **kwargs,
        }

        response = requests.post(url, json=data, headers=headers)

        if response.ok:
            return response.json().get("answer", "No answer found")
        else:
            raise MaritalkHTTPError(response)

    async def _acall(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> str:
        """
        Asynchronously sends the parsed messages to the MariTalk API and returns
        the generated response or an error message.

        This method makes an HTTP POST request to the MariTalk API with the
        provided messages and other parameters using async I/O.
        If the request is successful and the API returns a response,
        this method returns a string containing the answer.
        If the request is rate-limited or encounters another error,
        it returns a string with the error message.
        """
        try:
            import httpx

            url = "https://chat.maritaca.ai/api/chat/inference"
            headers = {"authorization": f"Key {self.api_key}"}
            stopping_tokens = stop if stop is not None else []

            parsed_messages = self.parse_messages_for_model(messages)

            data = {
                "messages": parsed_messages,
                "model": self.model,
                "do_sample": self.do_sample,
                "max_tokens": self.max_tokens,
                "temperature": self.temperature,
                "top_p": self.top_p,
                "stopping_tokens": stopping_tokens,
                **kwargs,
            }

            async with httpx.AsyncClient() as client:
                response = await client.post(
                    url, json=data, headers=headers, timeout=None
                )

            if response.status_code == 200:
                return response.json().get("answer", "No answer found")
            else:
                raise MaritalkHTTPError(response)

        except ImportError:
            raise ImportError(
                "Could not import httpx python package. "
                "Please install it with `pip install httpx`."
            )

    def _stream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> Iterator[ChatGenerationChunk]:
        headers = {"Authorization": f"Key {self.api_key}"}
        stopping_tokens = stop if stop is not None else []

        parsed_messages = self.parse_messages_for_model(messages)

        data = {
            "messages": parsed_messages,
            "model": self.model,
            "do_sample": self.do_sample,
            "max_tokens": self.max_tokens,
            "temperature": self.temperature,
            "top_p": self.top_p,
            "stopping_tokens": stopping_tokens,
            "stream": True,
            **kwargs,
        }

        response = requests.post(
            "https://chat.maritaca.ai/api/chat/inference",
            data=json.dumps(data),
            headers=headers,
            stream=True,
        )

        if response.ok:
            for line in response.iter_lines():
                if line.startswith(b"data: "):
                    response_data = line.replace(b"data: ", b"").decode("utf-8")
                    if response_data:
                        parsed_data = json.loads(response_data)
                        if "text" in parsed_data:
                            delta = parsed_data["text"]
                            chunk = ChatGenerationChunk(
                                message=AIMessageChunk(content=delta)
                            )
                            if run_manager:
                                run_manager.on_llm_new_token(delta, chunk=chunk)
                            yield chunk

        else:
            raise MaritalkHTTPError(response)

    async def _astream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> AsyncIterator[ChatGenerationChunk]:
        try:
            import httpx

            headers = {"Authorization": f"Key {self.api_key}"}
            stopping_tokens = stop if stop is not None else []

            parsed_messages = self.parse_messages_for_model(messages)

            data = {
                "messages": parsed_messages,
                "model": self.model,
                "do_sample": self.do_sample,
                "max_tokens": self.max_tokens,
                "temperature": self.temperature,
                "top_p": self.top_p,
                "stopping_tokens": stopping_tokens,
                "stream": True,
                **kwargs,
            }

            async with httpx.AsyncClient() as client:
                async with client.stream(
                    "POST",
                    "https://chat.maritaca.ai/api/chat/inference",
                    data=json.dumps(data),
                    headers=headers,
                    timeout=None,
                ) as response:
                    if response.status_code == 200:
                        async for line in response.aiter_lines():
                            if line.startswith("data: "):
                                response_data = line.replace("data: ", "")
                                if response_data:
                                    parsed_data = json.loads(response_data)
                                    if "text" in parsed_data:
                                        delta = parsed_data["text"]
                                        chunk = ChatGenerationChunk(
                                            message=AIMessageChunk(content=delta)
                                        )
                                        if run_manager:
                                            await run_manager.on_llm_new_token(
                                                delta, chunk=chunk
                                            )
                                        yield chunk

                    else:
                        raise MaritalkHTTPError(response)

        except ImportError:
            raise ImportError(
                "Could not import httpx python package. "
                "Please install it with `pip install httpx`."
            )

    def _generate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        output_str = self._call(messages, stop=stop, run_manager=run_manager, **kwargs)
        message = AIMessage(content=output_str)
        generation = ChatGeneration(message=message)
        return ChatResult(generations=[generation])

    async def _agenerate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        output_str = await self._acall(
            messages, stop=stop, run_manager=run_manager, **kwargs
        )
        message = AIMessage(content=output_str)
        generation = ChatGeneration(message=message)
        return ChatResult(generations=[generation])

    @property
    def _identifying_params(self) -> Dict[str, Any]:
        """
        Identifies the key parameters of the chat model for logging
        or tracking purposes.

        Returns:
            A dictionary of the key configuration parameters.
        """
        return {
            "model": self.model,
            "temperature": self.temperature,
            "top_p": self.top_p,
            "max_tokens": self.max_tokens,
        }