File size: 8,210 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional, cast

from langchain_core._api.deprecation import deprecated
from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import (
    BaseChatModel,
    agenerate_from_stream,
    generate_from_stream,
)
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    ChatMessage,
    HumanMessage,
    SystemMessage,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.prompt_values import PromptValue

from langchain_community.llms.anthropic import _AnthropicCommon


def _convert_one_message_to_text(
    message: BaseMessage,
    human_prompt: str,
    ai_prompt: str,
) -> str:
    content = cast(str, message.content)
    if isinstance(message, ChatMessage):
        message_text = f"\n\n{message.role.capitalize()}: {content}"
    elif isinstance(message, HumanMessage):
        message_text = f"{human_prompt} {content}"
    elif isinstance(message, AIMessage):
        message_text = f"{ai_prompt} {content}"
    elif isinstance(message, SystemMessage):
        message_text = content
    else:
        raise ValueError(f"Got unknown type {message}")
    return message_text


def convert_messages_to_prompt_anthropic(
    messages: List[BaseMessage],
    *,
    human_prompt: str = "\n\nHuman:",
    ai_prompt: str = "\n\nAssistant:",
) -> str:
    """Format a list of messages into a full prompt for the Anthropic model
    Args:
        messages (List[BaseMessage]): List of BaseMessage to combine.
        human_prompt (str, optional): Human prompt tag. Defaults to "\n\nHuman:".
        ai_prompt (str, optional): AI prompt tag. Defaults to "\n\nAssistant:".
    Returns:
        str: Combined string with necessary human_prompt and ai_prompt tags.
    """

    messages = messages.copy()  # don't mutate the original list
    if not isinstance(messages[-1], AIMessage):
        messages.append(AIMessage(content=""))

    text = "".join(
        _convert_one_message_to_text(message, human_prompt, ai_prompt)
        for message in messages
    )

    # trim off the trailing ' ' that might come from the "Assistant: "
    return text.rstrip()


@deprecated(
    since="0.0.28",
    removal="0.3",
    alternative_import="langchain_anthropic.ChatAnthropic",
)
class ChatAnthropic(BaseChatModel, _AnthropicCommon):
    """`Anthropic` chat large language models.

    To use, you should have the ``anthropic`` python package installed, and the
    environment variable ``ANTHROPIC_API_KEY`` set with your API key, or pass
    it as a named parameter to the constructor.

    Example:
        .. code-block:: python

            import anthropic
            from langchain_community.chat_models import ChatAnthropic
            model = ChatAnthropic(model="<model_name>", anthropic_api_key="my-api-key")
    """

    class Config:
        """Configuration for this pydantic object."""

        allow_population_by_field_name = True
        arbitrary_types_allowed = True

    @property
    def lc_secrets(self) -> Dict[str, str]:
        return {"anthropic_api_key": "ANTHROPIC_API_KEY"}

    @property
    def _llm_type(self) -> str:
        """Return type of chat model."""
        return "anthropic-chat"

    @classmethod
    def is_lc_serializable(cls) -> bool:
        """Return whether this model can be serialized by Langchain."""
        return True

    @classmethod
    def get_lc_namespace(cls) -> List[str]:
        """Get the namespace of the langchain object."""
        return ["langchain", "chat_models", "anthropic"]

    def _convert_messages_to_prompt(self, messages: List[BaseMessage]) -> str:
        """Format a list of messages into a full prompt for the Anthropic model
        Args:
            messages (List[BaseMessage]): List of BaseMessage to combine.
        Returns:
            str: Combined string with necessary HUMAN_PROMPT and AI_PROMPT tags.
        """
        prompt_params = {}
        if self.HUMAN_PROMPT:
            prompt_params["human_prompt"] = self.HUMAN_PROMPT
        if self.AI_PROMPT:
            prompt_params["ai_prompt"] = self.AI_PROMPT
        return convert_messages_to_prompt_anthropic(messages=messages, **prompt_params)

    def convert_prompt(self, prompt: PromptValue) -> str:
        return self._convert_messages_to_prompt(prompt.to_messages())

    def _stream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> Iterator[ChatGenerationChunk]:
        prompt = self._convert_messages_to_prompt(messages)
        params: Dict[str, Any] = {"prompt": prompt, **self._default_params, **kwargs}
        if stop:
            params["stop_sequences"] = stop

        stream_resp = self.client.completions.create(**params, stream=True)
        for data in stream_resp:
            delta = data.completion
            chunk = ChatGenerationChunk(message=AIMessageChunk(content=delta))
            if run_manager:
                run_manager.on_llm_new_token(delta, chunk=chunk)
            yield chunk

    async def _astream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> AsyncIterator[ChatGenerationChunk]:
        prompt = self._convert_messages_to_prompt(messages)
        params: Dict[str, Any] = {"prompt": prompt, **self._default_params, **kwargs}
        if stop:
            params["stop_sequences"] = stop

        stream_resp = await self.async_client.completions.create(**params, stream=True)
        async for data in stream_resp:
            delta = data.completion
            chunk = ChatGenerationChunk(message=AIMessageChunk(content=delta))
            if run_manager:
                await run_manager.on_llm_new_token(delta, chunk=chunk)
            yield chunk

    def _generate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        if self.streaming:
            stream_iter = self._stream(
                messages, stop=stop, run_manager=run_manager, **kwargs
            )
            return generate_from_stream(stream_iter)
        prompt = self._convert_messages_to_prompt(
            messages,
        )
        params: Dict[str, Any] = {
            "prompt": prompt,
            **self._default_params,
            **kwargs,
        }
        if stop:
            params["stop_sequences"] = stop
        response = self.client.completions.create(**params)
        completion = response.completion
        message = AIMessage(content=completion)
        return ChatResult(generations=[ChatGeneration(message=message)])

    async def _agenerate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        if self.streaming:
            stream_iter = self._astream(
                messages, stop=stop, run_manager=run_manager, **kwargs
            )
            return await agenerate_from_stream(stream_iter)
        prompt = self._convert_messages_to_prompt(
            messages,
        )
        params: Dict[str, Any] = {
            "prompt": prompt,
            **self._default_params,
            **kwargs,
        }
        if stop:
            params["stop_sequences"] = stop
        response = await self.async_client.completions.create(**params)
        completion = response.completion
        message = AIMessage(content=completion)
        return ChatResult(generations=[ChatGeneration(message=message)])

    def get_num_tokens(self, text: str) -> int:
        """Calculate number of tokens."""
        if not self.count_tokens:
            raise NameError("Please ensure the anthropic package is loaded")
        return self.count_tokens(text)