File size: 5,535 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
"""Callback handler for promptlayer."""
from __future__ import annotations

import datetime
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple
from uuid import UUID

from langchain_core.callbacks import BaseCallbackHandler
from langchain_core.messages import (
    AIMessage,
    BaseMessage,
    ChatMessage,
    HumanMessage,
    SystemMessage,
)
from langchain_core.outputs import (
    ChatGeneration,
    LLMResult,
)

if TYPE_CHECKING:
    import promptlayer


def _lazy_import_promptlayer() -> promptlayer:
    """Lazy import promptlayer to avoid circular imports."""
    try:
        import promptlayer
    except ImportError:
        raise ImportError(
            "The PromptLayerCallbackHandler requires the promptlayer package. "
            " Please install it with `pip install promptlayer`."
        )
    return promptlayer


class PromptLayerCallbackHandler(BaseCallbackHandler):
    """Callback handler for promptlayer."""

    def __init__(
        self,
        pl_id_callback: Optional[Callable[..., Any]] = None,
        pl_tags: Optional[List[str]] = None,
    ) -> None:
        """Initialize the PromptLayerCallbackHandler."""
        _lazy_import_promptlayer()
        self.pl_id_callback = pl_id_callback
        self.pl_tags = pl_tags or []
        self.runs: Dict[UUID, Dict[str, Any]] = {}

    def on_chat_model_start(
        self,
        serialized: Dict[str, Any],
        messages: List[List[BaseMessage]],
        *,
        run_id: UUID,
        parent_run_id: Optional[UUID] = None,
        tags: Optional[List[str]] = None,
        **kwargs: Any,
    ) -> Any:
        self.runs[run_id] = {
            "messages": [self._create_message_dicts(m)[0] for m in messages],
            "invocation_params": kwargs.get("invocation_params", {}),
            "name": ".".join(serialized["id"]),
            "request_start_time": datetime.datetime.now().timestamp(),
            "tags": tags,
        }

    def on_llm_start(
        self,
        serialized: Dict[str, Any],
        prompts: List[str],
        *,
        run_id: UUID,
        parent_run_id: Optional[UUID] = None,
        tags: Optional[List[str]] = None,
        **kwargs: Any,
    ) -> Any:
        self.runs[run_id] = {
            "prompts": prompts,
            "invocation_params": kwargs.get("invocation_params", {}),
            "name": ".".join(serialized["id"]),
            "request_start_time": datetime.datetime.now().timestamp(),
            "tags": tags,
        }

    def on_llm_end(
        self,
        response: LLMResult,
        *,
        run_id: UUID,
        parent_run_id: Optional[UUID] = None,
        **kwargs: Any,
    ) -> None:
        from promptlayer.utils import get_api_key, promptlayer_api_request

        run_info = self.runs.get(run_id, {})
        if not run_info:
            return
        run_info["request_end_time"] = datetime.datetime.now().timestamp()
        for i in range(len(response.generations)):
            generation = response.generations[i][0]

            resp = {
                "text": generation.text,
                "llm_output": response.llm_output,
            }
            model_params = run_info.get("invocation_params", {})
            is_chat_model = run_info.get("messages", None) is not None
            model_input = (
                run_info.get("messages", [])[i]
                if is_chat_model
                else [run_info.get("prompts", [])[i]]
            )
            model_response = (
                [self._convert_message_to_dict(generation.message)]
                if is_chat_model and isinstance(generation, ChatGeneration)
                else resp
            )

            pl_request_id = promptlayer_api_request(
                run_info.get("name"),
                "langchain",
                model_input,
                model_params,
                self.pl_tags,
                model_response,
                run_info.get("request_start_time"),
                run_info.get("request_end_time"),
                get_api_key(),
                return_pl_id=bool(self.pl_id_callback is not None),
                metadata={
                    "_langchain_run_id": str(run_id),
                    "_langchain_parent_run_id": str(parent_run_id),
                    "_langchain_tags": str(run_info.get("tags", [])),
                },
            )

            if self.pl_id_callback:
                self.pl_id_callback(pl_request_id)

    def _convert_message_to_dict(self, message: BaseMessage) -> Dict[str, Any]:
        if isinstance(message, HumanMessage):
            message_dict = {"role": "user", "content": message.content}
        elif isinstance(message, AIMessage):
            message_dict = {"role": "assistant", "content": message.content}
        elif isinstance(message, SystemMessage):
            message_dict = {"role": "system", "content": message.content}
        elif isinstance(message, ChatMessage):
            message_dict = {"role": message.role, "content": message.content}
        else:
            raise ValueError(f"Got unknown type {message}")
        if "name" in message.additional_kwargs:
            message_dict["name"] = message.additional_kwargs["name"]
        return message_dict

    def _create_message_dicts(
        self, messages: List[BaseMessage]
    ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
        params: Dict[str, Any] = {}
        message_dicts = [self._convert_message_to_dict(m) for m in messages]
        return message_dicts, params