File size: 13,879 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import os
import warnings
from datetime import datetime
from enum import Enum
from typing import Any, Dict, List, Optional, Tuple, Union
from uuid import UUID

from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.callbacks import BaseCallbackHandler
from langchain_core.messages import BaseMessage, ChatMessage
from langchain_core.outputs import Generation, LLMResult


class LabelStudioMode(Enum):
    """Label Studio mode enumerator."""

    PROMPT = "prompt"
    CHAT = "chat"


def get_default_label_configs(
    mode: Union[str, LabelStudioMode],
) -> Tuple[str, LabelStudioMode]:
    """Get default Label Studio configs for the given mode.

    Parameters:
        mode: Label Studio mode ("prompt" or "chat")

    Returns: Tuple of Label Studio config and mode
    """
    _default_label_configs = {
        LabelStudioMode.PROMPT.value: """
<View>
<Style>
    .prompt-box {
        background-color: white;
        border-radius: 10px;
        box-shadow: 0px 4px 6px rgba(0, 0, 0, 0.1);
        padding: 20px;
    }
</Style>
<View className="root">
    <View className="prompt-box">
        <Text name="prompt" value="$prompt"/>
    </View>
    <TextArea name="response" toName="prompt"
              maxSubmissions="1" editable="true"
              required="true"/>
</View>
<Header value="Rate the response:"/>
<Rating name="rating" toName="prompt"/>
</View>""",
        LabelStudioMode.CHAT.value: """
<View>
<View className="root">
     <Paragraphs name="dialogue"
               value="$prompt"
               layout="dialogue"
               textKey="content"
               nameKey="role"
               granularity="sentence"/>
  <Header value="Final response:"/>
    <TextArea name="response" toName="dialogue"
              maxSubmissions="1" editable="true"
              required="true"/>
</View>
<Header value="Rate the response:"/>
<Rating name="rating" toName="dialogue"/>
</View>""",
    }

    if isinstance(mode, str):
        mode = LabelStudioMode(mode)

    return _default_label_configs[mode.value], mode


class LabelStudioCallbackHandler(BaseCallbackHandler):
    """Label Studio callback handler.
    Provides the ability to send predictions to Label Studio
    for human evaluation, feedback and annotation.

    Parameters:
        api_key: Label Studio API key
        url: Label Studio URL
        project_id: Label Studio project ID
        project_name: Label Studio project name
        project_config: Label Studio project config (XML)
        mode: Label Studio mode ("prompt" or "chat")

    Examples:
        >>> from langchain_community.llms import OpenAI
        >>> from langchain_community.callbacks import LabelStudioCallbackHandler
        >>> handler = LabelStudioCallbackHandler(
        ...             api_key='<your_key_here>',
        ...             url='http://localhost:8080',
        ...             project_name='LangChain-%Y-%m-%d',
        ...             mode='prompt'
        ... )
        >>> llm = OpenAI(callbacks=[handler])
        >>> llm.invoke('Tell me a story about a dog.')
    """

    DEFAULT_PROJECT_NAME: str = "LangChain-%Y-%m-%d"

    def __init__(
        self,
        api_key: Optional[str] = None,
        url: Optional[str] = None,
        project_id: Optional[int] = None,
        project_name: str = DEFAULT_PROJECT_NAME,
        project_config: Optional[str] = None,
        mode: Union[str, LabelStudioMode] = LabelStudioMode.PROMPT,
    ):
        super().__init__()

        # Import LabelStudio SDK
        try:
            import label_studio_sdk as ls
        except ImportError:
            raise ImportError(
                f"You're using {self.__class__.__name__} in your code,"
                f" but you don't have the LabelStudio SDK "
                f"Python package installed or upgraded to the latest version. "
                f"Please run `pip install -U label-studio-sdk`"
                f" before using this callback."
            )

        # Check if Label Studio API key is provided
        if not api_key:
            if os.getenv("LABEL_STUDIO_API_KEY"):
                api_key = str(os.getenv("LABEL_STUDIO_API_KEY"))
            else:
                raise ValueError(
                    f"You're using {self.__class__.__name__} in your code,"
                    f" Label Studio API key is not provided. "
                    f"Please provide Label Studio API key: "
                    f"go to the Label Studio instance, navigate to "
                    f"Account & Settings -> Access Token and copy the key. "
                    f"Use the key as a parameter for the callback: "
                    f"{self.__class__.__name__}"
                    f"(label_studio_api_key='<your_key_here>', ...) or "
                    f"set the environment variable LABEL_STUDIO_API_KEY=<your_key_here>"
                )
        self.api_key = api_key

        if not url:
            if os.getenv("LABEL_STUDIO_URL"):
                url = os.getenv("LABEL_STUDIO_URL")
            else:
                warnings.warn(
                    f"Label Studio URL is not provided, "
                    f"using default URL: {ls.LABEL_STUDIO_DEFAULT_URL}"
                    f"If you want to provide your own URL, use the parameter: "
                    f"{self.__class__.__name__}"
                    f"(label_studio_url='<your_url_here>', ...) "
                    f"or set the environment variable LABEL_STUDIO_URL=<your_url_here>"
                )
                url = ls.LABEL_STUDIO_DEFAULT_URL
        self.url = url

        # Maps run_id to prompts
        self.payload: Dict[str, Dict] = {}

        self.ls_client = ls.Client(url=self.url, api_key=self.api_key)
        self.project_name = project_name
        if project_config:
            self.project_config = project_config
            self.mode = None
        else:
            self.project_config, self.mode = get_default_label_configs(mode)

        self.project_id = project_id or os.getenv("LABEL_STUDIO_PROJECT_ID")
        if self.project_id is not None:
            self.ls_project = self.ls_client.get_project(int(self.project_id))
        else:
            project_title = datetime.today().strftime(self.project_name)
            existing_projects = self.ls_client.get_projects(title=project_title)
            if existing_projects:
                self.ls_project = existing_projects[0]
                self.project_id = self.ls_project.id
            else:
                self.ls_project = self.ls_client.create_project(
                    title=project_title, label_config=self.project_config
                )
                self.project_id = self.ls_project.id
        self.parsed_label_config = self.ls_project.parsed_label_config

        # Find the first TextArea tag
        # "from_name", "to_name", "value" will be used to create predictions
        self.from_name, self.to_name, self.value, self.input_type = (
            None,
            None,
            None,
            None,
        )
        for tag_name, tag_info in self.parsed_label_config.items():
            if tag_info["type"] == "TextArea":
                self.from_name = tag_name
                self.to_name = tag_info["to_name"][0]
                self.value = tag_info["inputs"][0]["value"]
                self.input_type = tag_info["inputs"][0]["type"]
                break
        if not self.from_name:
            error_message = (
                f'Label Studio project "{self.project_name}" '
                f"does not have a TextArea tag. "
                f"Please add a TextArea tag to the project."
            )
            if self.mode == LabelStudioMode.PROMPT:
                error_message += (
                    "\nHINT: go to project Settings -> "
                    "Labeling Interface -> Browse Templates"
                    ' and select "Generative AI -> '
                    'Supervised Language Model Fine-tuning" template.'
                )
            else:
                error_message += (
                    "\nHINT: go to project Settings -> "
                    "Labeling Interface -> Browse Templates"
                    " and check available templates under "
                    '"Generative AI" section.'
                )
            raise ValueError(error_message)

    def add_prompts_generations(
        self, run_id: str, generations: List[List[Generation]]
    ) -> None:
        # Create tasks in Label Studio
        tasks = []
        prompts = self.payload[run_id]["prompts"]
        model_version = (
            self.payload[run_id]["kwargs"]
            .get("invocation_params", {})
            .get("model_name")
        )
        for prompt, generation in zip(prompts, generations):
            tasks.append(
                {
                    "data": {
                        self.value: prompt,
                        "run_id": run_id,
                    },
                    "predictions": [
                        {
                            "result": [
                                {
                                    "from_name": self.from_name,
                                    "to_name": self.to_name,
                                    "type": "textarea",
                                    "value": {"text": [g.text for g in generation]},
                                }
                            ],
                            "model_version": model_version,
                        }
                    ],
                }
            )
        self.ls_project.import_tasks(tasks)

    def on_llm_start(
        self,
        serialized: Dict[str, Any],
        prompts: List[str],
        **kwargs: Any,
    ) -> None:
        """Save the prompts in memory when an LLM starts."""
        if self.input_type != "Text":
            raise ValueError(
                f'\nLabel Studio project "{self.project_name}" '
                f"has an input type <{self.input_type}>. "
                f'To make it work with the mode="chat", '
                f"the input type should be <Text>.\n"
                f"Read more here https://labelstud.io/tags/text"
            )
        run_id = str(kwargs["run_id"])
        self.payload[run_id] = {"prompts": prompts, "kwargs": kwargs}

    def _get_message_role(self, message: BaseMessage) -> str:
        """Get the role of the message."""
        if isinstance(message, ChatMessage):
            return message.role
        else:
            return message.__class__.__name__

    def on_chat_model_start(
        self,
        serialized: Dict[str, Any],
        messages: List[List[BaseMessage]],
        *,
        run_id: UUID,
        parent_run_id: Optional[UUID] = None,
        tags: Optional[List[str]] = None,
        metadata: Optional[Dict[str, Any]] = None,
        **kwargs: Any,
    ) -> Any:
        """Save the prompts in memory when an LLM starts."""
        if self.input_type != "Paragraphs":
            raise ValueError(
                f'\nLabel Studio project "{self.project_name}" '
                f"has an input type <{self.input_type}>. "
                f'To make it work with the mode="chat", '
                f"the input type should be <Paragraphs>.\n"
                f"Read more here https://labelstud.io/tags/paragraphs"
            )

        prompts = []
        for message_list in messages:
            dialog = []
            for message in message_list:
                dialog.append(
                    {
                        "role": self._get_message_role(message),
                        "content": message.content,
                    }
                )
            prompts.append(dialog)
        self.payload[str(run_id)] = {
            "prompts": prompts,
            "tags": tags,
            "metadata": metadata,
            "run_id": run_id,
            "parent_run_id": parent_run_id,
            "kwargs": kwargs,
        }

    def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
        """Do nothing when a new token is generated."""
        pass

    def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
        """Create a new Label Studio task for each prompt and generation."""
        run_id = str(kwargs["run_id"])

        # Submit results to Label Studio
        self.add_prompts_generations(run_id, response.generations)

        # Pop current run from `self.runs`
        self.payload.pop(run_id)

    def on_llm_error(self, error: BaseException, **kwargs: Any) -> None:
        """Do nothing when LLM outputs an error."""
        pass

    def on_chain_start(
        self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
    ) -> None:
        pass

    def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
        pass

    def on_chain_error(self, error: BaseException, **kwargs: Any) -> None:
        """Do nothing when LLM chain outputs an error."""
        pass

    def on_tool_start(
        self,
        serialized: Dict[str, Any],
        input_str: str,
        **kwargs: Any,
    ) -> None:
        """Do nothing when tool starts."""
        pass

    def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
        """Do nothing when agent takes a specific action."""
        pass

    def on_tool_end(
        self,
        output: str,
        observation_prefix: Optional[str] = None,
        llm_prefix: Optional[str] = None,
        **kwargs: Any,
    ) -> None:
        """Do nothing when tool ends."""
        pass

    def on_tool_error(self, error: BaseException, **kwargs: Any) -> None:
        """Do nothing when tool outputs an error."""
        pass

    def on_text(self, text: str, **kwargs: Any) -> None:
        """Do nothing"""
        pass

    def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
        """Do nothing"""
        pass