File size: 7,967 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from typing import Any, List, Mapping, Optional, Sequence


class AmazonPersonalize:
    """Amazon Personalize Runtime wrapper for executing real-time operations.

    See [this link for more details](https://docs.aws.amazon.com/personalize/latest/dg/API_Operations_Amazon_Personalize_Runtime.html).

    Args:
        campaign_arn: str, Optional: The Amazon Resource Name (ARN) of the campaign
                                    to use for getting recommendations.
        recommender_arn: str, Optional: The Amazon Resource Name (ARN) of the
                                    recommender to use to get recommendations
        client: Optional:  boto3 client
        credentials_profile_name: str, Optional :AWS profile name
        region_name: str, Optional:  AWS region, e.g., us-west-2

    Example:
        .. code-block:: python

        personalize_client = AmazonPersonalize (
            campaignArn='<my-campaign-arn>' )
    """

    def __init__(
        self,
        campaign_arn: Optional[str] = None,
        recommender_arn: Optional[str] = None,
        client: Optional[Any] = None,
        credentials_profile_name: Optional[str] = None,
        region_name: Optional[str] = None,
    ):
        self.campaign_arn = campaign_arn
        self.recommender_arn = recommender_arn

        if campaign_arn and recommender_arn:
            raise ValueError(
                "Cannot initialize AmazonPersonalize with both "
                "campaign_arn and recommender_arn."
            )

        if not campaign_arn and not recommender_arn:
            raise ValueError(
                "Cannot initialize AmazonPersonalize. Provide one of "
                "campaign_arn or recommender_arn"
            )

        try:
            if client is not None:
                self.client = client
            else:
                import boto3
                import botocore.config

                if credentials_profile_name is not None:
                    session = boto3.Session(profile_name=credentials_profile_name)
                else:
                    # use default credentials
                    session = boto3.Session()

                client_params = {}
                if region_name:
                    client_params["region_name"] = region_name

                service = "personalize-runtime"
                session_config = botocore.config.Config(user_agent_extra="langchain")
                client_params["config"] = session_config
                self.client = session.client(service, **client_params)

        except ImportError:
            raise ModuleNotFoundError(
                "Could not import boto3 python package. "
                "Please install it with `pip install boto3`."
            )

    def get_recommendations(
        self,
        user_id: Optional[str] = None,
        item_id: Optional[str] = None,
        filter_arn: Optional[str] = None,
        filter_values: Optional[Mapping[str, str]] = None,
        num_results: Optional[int] = 10,
        context: Optional[Mapping[str, str]] = None,
        promotions: Optional[Sequence[Mapping[str, Any]]] = None,
        metadata_columns: Optional[Mapping[str, Sequence[str]]] = None,
        **kwargs: Any,
    ) -> Mapping[str, Any]:
        """Get recommendations from Amazon Personalize service.

        See more details at:
        https://docs.aws.amazon.com/personalize/latest/dg/API_RS_GetRecommendations.html

        Args:
            user_id: str, Optional: The user identifier
                                    for which to retrieve recommendations
            item_id: str, Optional: The item identifier
                                    for which to retrieve recommendations
            filter_arn: str, Optional:  The ARN of the filter
                                    to apply to the returned recommendations
            filter_values: Mapping, Optional: The values
                                    to use when filtering recommendations.
            num_results: int, Optional: Default=10: The number of results to return
            context: Mapping, Optional: The contextual metadata
                                    to use when getting recommendations
            promotions: Sequence, Optional: The promotions
                                    to apply to the recommendation request.
            metadata_columns: Mapping, Optional: The metadata Columns to be returned
                                    as part of the response.

        Returns:
            response: Mapping[str, Any]: Returns an itemList and recommendationId.

        Example:
            .. code-block:: python

        personalize_client = AmazonPersonalize(campaignArn='<my-campaign-arn>' )\n
        response = personalize_client.get_recommendations(user_id="1")

        """
        if not user_id and not item_id:
            raise ValueError("One of user_id or item_id is required")

        if filter_arn:
            kwargs["filterArn"] = filter_arn
        if filter_values:
            kwargs["filterValues"] = filter_values
        if user_id:
            kwargs["userId"] = user_id
        if num_results:
            kwargs["numResults"] = num_results
        if context:
            kwargs["context"] = context
        if promotions:
            kwargs["promotions"] = promotions
        if item_id:
            kwargs["itemId"] = item_id
        if metadata_columns:
            kwargs["metadataColumns"] = metadata_columns
        if self.campaign_arn:
            kwargs["campaignArn"] = self.campaign_arn
        if self.recommender_arn:
            kwargs["recommenderArn"] = self.recommender_arn

        return self.client.get_recommendations(**kwargs)

    def get_personalized_ranking(
        self,
        user_id: str,
        input_list: List[str],
        filter_arn: Optional[str] = None,
        filter_values: Optional[Mapping[str, str]] = None,
        context: Optional[Mapping[str, str]] = None,
        metadata_columns: Optional[Mapping[str, Sequence[str]]] = None,
        **kwargs: Any,
    ) -> Mapping[str, Any]:
        """Re-ranks a list of recommended items for the given user.

        https://docs.aws.amazon.com/personalize/latest/dg/API_RS_GetPersonalizedRanking.html

        Args:
            user_id: str, Required: The user identifier
                                    for which to retrieve recommendations
            input_list: List[str], Required: A list of items (by itemId) to rank
            filter_arn: str, Optional:  The ARN of the filter to apply
            filter_values: Mapping, Optional: The values to use
                                                when filtering recommendations.
            context: Mapping, Optional: The contextual metadata
                                            to use when getting recommendations
            metadata_columns: Mapping, Optional: The metadata Columns to be returned
                                    as part of the response.

        Returns:
            response: Mapping[str, Any]: Returns personalizedRanking
                                                and recommendationId.

        Example:
            .. code-block:: python

        personalize_client = AmazonPersonalize(campaignArn='<my-campaign-arn>' )\n
        response = personalize_client.get_personalized_ranking(user_id="1",
                                                        input_list=["123,"256"])

        """

        if filter_arn:
            kwargs["filterArn"] = filter_arn
        if filter_values:
            kwargs["filterValues"] = filter_values
        if user_id:
            kwargs["userId"] = user_id
        if input_list:
            kwargs["inputList"] = input_list
        if context:
            kwargs["context"] = context
        if metadata_columns:
            kwargs["metadataColumns"] = metadata_columns
        kwargs["campaignArn"] = self.campaign_arn

        return self.client.get_personalized_ranking(kwargs)