File size: 13,325 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
"""Implements Program-Aided Language Models.

This module implements the Program-Aided Language Models (PAL) for generating code
solutions. PAL is a technique described in the paper "Program-Aided Language Models"
(https://arxiv.org/pdf/2211.10435.pdf).
"""

from __future__ import annotations

import ast
from typing import Any, Dict, List, Optional

from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain_community.utilities import PythonREPL
from langchain_core.callbacks.manager import CallbackManagerForChainRun
from langchain_core.language_models import BaseLanguageModel

from langchain_experimental.pal_chain.colored_object_prompt import COLORED_OBJECT_PROMPT
from langchain_experimental.pal_chain.math_prompt import MATH_PROMPT
from langchain_experimental.pydantic_v1 import Extra, Field

COMMAND_EXECUTION_FUNCTIONS = ["system", "exec", "execfile", "eval", "__import__"]
COMMAND_EXECUTION_ATTRIBUTES = [
    "__import__",
    "__subclasses__",
    "__builtins__",
    "__globals__",
    "__getattribute__",
    "__bases__",
    "__mro__",
    "__base__",
]


class PALValidation:
    """Validation for PAL generated code."""

    SOLUTION_EXPRESSION_TYPE_FUNCTION = ast.FunctionDef
    SOLUTION_EXPRESSION_TYPE_VARIABLE = ast.Name

    def __init__(
        self,
        solution_expression_name: Optional[str] = None,
        solution_expression_type: Optional[type] = None,
        allow_imports: bool = False,
        allow_command_exec: bool = False,
    ):
        """Initialize a PALValidation instance.

        Args:
            solution_expression_name (str): Name of the expected solution expression.
                If passed, solution_expression_type must be passed as well.
            solution_expression_type (str): AST type of the expected solution
                expression. If passed, solution_expression_name must be passed as well.
                Must be one of PALValidation.SOLUTION_EXPRESSION_TYPE_FUNCTION,
                PALValidation.SOLUTION_EXPRESSION_TYPE_VARIABLE.
            allow_imports (bool): Allow import statements.
            allow_command_exec (bool): Allow using known command execution functions.
        """
        self.solution_expression_name = solution_expression_name
        self.solution_expression_type = solution_expression_type

        if solution_expression_name is not None:
            if not isinstance(self.solution_expression_name, str):
                raise ValueError(
                    f"Expected solution_expression_name to be str, "
                    f"instead found {type(self.solution_expression_name)}"
                )
        if solution_expression_type is not None:
            if (
                self.solution_expression_type
                is not self.SOLUTION_EXPRESSION_TYPE_FUNCTION
                and self.solution_expression_type
                is not self.SOLUTION_EXPRESSION_TYPE_VARIABLE
            ):
                raise ValueError(
                    f"Expected solution_expression_type to be one of "
                    f"({self.SOLUTION_EXPRESSION_TYPE_FUNCTION},"
                    f"{self.SOLUTION_EXPRESSION_TYPE_VARIABLE}),"
                    f"instead found {self.solution_expression_type}"
                )

        if solution_expression_name is not None and solution_expression_type is None:
            raise TypeError(
                "solution_expression_name "
                "requires solution_expression_type to be passed as well"
            )
        if solution_expression_name is None and solution_expression_type is not None:
            raise TypeError(
                "solution_expression_type "
                "requires solution_expression_name to be passed as well"
            )

        self.allow_imports = allow_imports
        self.allow_command_exec = allow_command_exec


class PALChain(Chain):
    """Chain that implements Program-Aided Language Models (PAL).

    This class implements the Program-Aided Language Models (PAL) for generating code
    solutions. PAL is a technique described in the paper "Program-Aided Language Models"
    (https://arxiv.org/pdf/2211.10435.pdf).

    *Security note*: This class implements an AI technique that generates and evaluates
        Python code, which can be dangerous and requires a specially sandboxed
        environment to be safely used. While this class implements some basic guardrails
        by limiting available locals/globals and by parsing and inspecting
        the generated Python AST using `PALValidation`, those guardrails will not
        deter sophisticated attackers and are not a replacement for a proper sandbox.
        Do not use this class on untrusted inputs, with elevated permissions,
        or without consulting your security team about proper sandboxing!
    """

    llm_chain: LLMChain
    stop: str = "\n\n"
    """Stop token to use when generating code."""
    get_answer_expr: str = "print(solution())"
    """Expression to use to get the answer from the generated code."""
    python_globals: Optional[Dict[str, Any]] = None
    """Python globals and locals to use when executing the generated code."""
    python_locals: Optional[Dict[str, Any]] = None
    """Python globals and locals to use when executing the generated code."""
    output_key: str = "result"  #: :meta private:
    return_intermediate_steps: bool = False
    """Whether to return intermediate steps in the generated code."""
    code_validations: PALValidation = Field(default_factory=PALValidation)
    """Validations to perform on the generated code."""
    timeout: Optional[int] = 10
    """Timeout in seconds for the generated code to execute."""

    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.forbid
        arbitrary_types_allowed = True

    @property
    def input_keys(self) -> List[str]:
        """Return the singular input key.

        :meta private:
        """
        return self.llm_chain.prompt.input_variables

    @property
    def output_keys(self) -> List[str]:
        """Return the singular output key.

        :meta private:
        """
        if not self.return_intermediate_steps:
            return [self.output_key]
        else:
            return [self.output_key, "intermediate_steps"]

    def _call(
        self,
        inputs: Dict[str, Any],
        run_manager: Optional[CallbackManagerForChainRun] = None,
    ) -> Dict[str, str]:
        _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
        code = self.llm_chain.predict(
            stop=[self.stop], callbacks=_run_manager.get_child(), **inputs
        )
        _run_manager.on_text(code, color="green", end="\n", verbose=self.verbose)
        PALChain.validate_code(code, self.code_validations)

        # TODO: look into why mypy thinks PythonREPL's type here is `Any`
        #       and therefore not callable
        repl = PythonREPL(
            _globals=self.python_globals,
            _locals=self.python_locals,
        )  # type: ignore[misc]
        res = repl.run(code + f"\n{self.get_answer_expr}", timeout=self.timeout)
        output = {self.output_key: res.strip()}
        if self.return_intermediate_steps:
            output["intermediate_steps"] = code
        return output

    @classmethod
    def validate_code(cls, code: str, code_validations: PALValidation) -> None:
        try:
            code_tree = ast.parse(code)
        except (SyntaxError, UnicodeDecodeError):
            raise ValueError(f"Generated code is not valid python code: {code}")
        except TypeError:
            raise ValueError(
                f"Generated code is expected to be a string, "
                f"instead found {type(code)}"
            )
        except OverflowError:
            raise ValueError(
                f"Generated code too long / complex to be parsed by ast: {code}"
            )

        found_solution_expr = False
        if code_validations.solution_expression_name is None:
            # Skip validation if no solution_expression_name was given
            found_solution_expr = True

        has_imports = False
        top_level_nodes = list(ast.iter_child_nodes(code_tree))
        for node in top_level_nodes:
            if (
                code_validations.solution_expression_name is not None
                and code_validations.solution_expression_type is not None
            ):
                # Check root nodes (like func def)
                if (
                    isinstance(node, code_validations.solution_expression_type)
                    and hasattr(node, "name")
                    and node.name == code_validations.solution_expression_name
                ):
                    found_solution_expr = True
                # Check assigned nodes (like answer variable)
                if isinstance(node, ast.Assign):
                    for target_node in node.targets:
                        if (
                            isinstance(
                                target_node, code_validations.solution_expression_type
                            )
                            and hasattr(target_node, "id")
                            and target_node.id
                            == code_validations.solution_expression_name
                        ):
                            found_solution_expr = True
            if isinstance(node, ast.Import) or isinstance(node, ast.ImportFrom):
                has_imports = True

        if not found_solution_expr:
            raise ValueError(
                f"Generated code is missing the solution expression: "
                f"{code_validations.solution_expression_name} of type: "
                f"{code_validations.solution_expression_type}"
            )

        if not code_validations.allow_imports and has_imports:
            raise ValueError(f"Generated code has disallowed imports: {code}")

        if (
            not code_validations.allow_command_exec
            or not code_validations.allow_imports
        ):
            for node in ast.walk(code_tree):
                if (
                    not code_validations.allow_command_exec
                    and isinstance(node, ast.Attribute)
                    and node.attr in COMMAND_EXECUTION_ATTRIBUTES
                ):
                    raise ValueError(
                        f"Found illegal command execution function "
                        f"{node.attr} in code {code}"
                    )
                if (not code_validations.allow_command_exec) and isinstance(
                    node, ast.Call
                ):
                    if (
                        hasattr(node.func, "id")
                        and node.func.id in COMMAND_EXECUTION_FUNCTIONS
                    ):
                        raise ValueError(
                            f"Found illegal command execution function "
                            f"{node.func.id} in code {code}"
                        )

                    if (
                        isinstance(node.func, ast.Attribute)
                        and node.func.attr in COMMAND_EXECUTION_FUNCTIONS
                    ):
                        raise ValueError(
                            f"Found illegal command execution function "
                            f"{node.func.attr} in code {code}"
                        )

                if (not code_validations.allow_imports) and (
                    isinstance(node, ast.Import) or isinstance(node, ast.ImportFrom)
                ):
                    raise ValueError(f"Generated code has disallowed imports: {code}")

    @classmethod
    def from_math_prompt(cls, llm: BaseLanguageModel, **kwargs: Any) -> PALChain:
        """Load PAL from math prompt.

        Args:
            llm (BaseLanguageModel): The language model to use for generating code.

        Returns:
            PALChain: An instance of PALChain.
        """
        llm_chain = LLMChain(llm=llm, prompt=MATH_PROMPT)
        code_validations = PALValidation(
            solution_expression_name="solution",
            solution_expression_type=PALValidation.SOLUTION_EXPRESSION_TYPE_FUNCTION,
        )

        return cls(
            llm_chain=llm_chain,
            stop="\n\n",
            get_answer_expr="print(solution())",
            code_validations=code_validations,
            **kwargs,
        )

    @classmethod
    def from_colored_object_prompt(
        cls, llm: BaseLanguageModel, **kwargs: Any
    ) -> PALChain:
        """Load PAL from colored object prompt.

        Args:
            llm (BaseLanguageModel): The language model to use for generating code.

        Returns:
            PALChain: An instance of PALChain.
        """
        llm_chain = LLMChain(llm=llm, prompt=COLORED_OBJECT_PROMPT)
        code_validations = PALValidation(
            solution_expression_name="answer",
            solution_expression_type=PALValidation.SOLUTION_EXPRESSION_TYPE_VARIABLE,
        )
        return cls(
            llm_chain=llm_chain,
            stop="\n\n\n",
            get_answer_expr="print(answer)",
            code_validations=code_validations,
            **kwargs,
        )

    @property
    def _chain_type(self) -> str:
        return "pal_chain"