Spaces:
Runtime error
Runtime error
File size: 1,811 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
from abc import ABC, abstractmethod
from typing import Callable, List, Optional
from langchain_experimental.data_anonymizer.deanonymizer_mapping import MappingDataType
from langchain_experimental.data_anonymizer.deanonymizer_matching_strategies import (
exact_matching_strategy,
)
DEFAULT_DEANONYMIZER_MATCHING_STRATEGY = exact_matching_strategy
class AnonymizerBase(ABC):
"""Base abstract class for anonymizers.
It is public and non-virtual because it allows
wrapping the behavior for all methods in a base class.
"""
def anonymize(
self,
text: str,
language: Optional[str] = None,
allow_list: Optional[List[str]] = None,
) -> str:
"""Anonymize text."""
return self._anonymize(text, language, allow_list)
@abstractmethod
def _anonymize(
self, text: str, language: Optional[str], allow_list: Optional[List[str]] = None
) -> str:
"""Abstract method to anonymize text"""
class ReversibleAnonymizerBase(AnonymizerBase):
"""
Base abstract class for reversible anonymizers.
"""
def deanonymize(
self,
text_to_deanonymize: str,
deanonymizer_matching_strategy: Callable[
[str, MappingDataType], str
] = DEFAULT_DEANONYMIZER_MATCHING_STRATEGY,
) -> str:
"""Deanonymize text"""
return self._deanonymize(text_to_deanonymize, deanonymizer_matching_strategy)
@abstractmethod
def _deanonymize(
self,
text_to_deanonymize: str,
deanonymizer_matching_strategy: Callable[[str, MappingDataType], str],
) -> str:
"""Abstract method to deanonymize text"""
@abstractmethod
def reset_deanonymizer_mapping(self) -> None:
"""Abstract method to reset deanonymizer mapping"""
|