File size: 8,900 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
"""Test caching for LLMs and ChatModels."""
import sqlite3
from typing import Dict, Generator, List, Union

import pytest
from _pytest.fixtures import FixtureRequest
from langchain_core.caches import InMemoryCache
from langchain_core.language_models import FakeListChatModel, FakeListLLM
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.language_models.llms import BaseLLM
from langchain_core.load import dumps
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
from langchain_core.outputs import ChatGeneration
from sqlalchemy import Column, Integer, Sequence, String, create_engine
from sqlalchemy.orm import Session

try:
    from sqlalchemy.orm import declarative_base
except ImportError:
    from sqlalchemy.ext.declarative import declarative_base

from langchain.globals import get_llm_cache, set_llm_cache
from langchain_core.outputs import Generation, LLMResult

from langchain_community.cache import SQLAlchemyCache
from tests.unit_tests.llms.fake_llm import FakeLLM


def get_sqlite_cache() -> SQLAlchemyCache:
    return SQLAlchemyCache(
        engine=create_engine(
            "sqlite://", creator=lambda: sqlite3.connect("file::memory:?cache=shared")
        )
    )


CACHE_OPTIONS = [
    InMemoryCache,
    get_sqlite_cache,
]


@pytest.fixture(autouse=True, params=CACHE_OPTIONS)
def set_cache_and_teardown(request: FixtureRequest) -> Generator[None, None, None]:
    # Will be run before each test
    cache_instance = request.param
    set_llm_cache(cache_instance())
    if llm_cache := get_llm_cache():
        llm_cache.clear()
    else:
        raise ValueError("Cache not set. This should never happen.")

    yield

    # Will be run after each test
    if llm_cache:
        llm_cache.clear()
        set_llm_cache(None)
    else:
        raise ValueError("Cache not set. This should never happen.")


async def test_llm_caching() -> None:
    prompt = "How are you?"
    response = "Test response"
    cached_response = "Cached test response"
    llm = FakeListLLM(responses=[response])
    if llm_cache := get_llm_cache():
        # sync test
        llm_cache.update(
            prompt=prompt,
            llm_string=create_llm_string(llm),
            return_val=[Generation(text=cached_response)],
        )
        assert llm.invoke(prompt) == cached_response
        # async test
        await llm_cache.aupdate(
            prompt=prompt,
            llm_string=create_llm_string(llm),
            return_val=[Generation(text=cached_response)],
        )
        assert await llm.ainvoke(prompt) == cached_response
    else:
        raise ValueError(
            "The cache not set. This should never happen, as the pytest fixture "
            "`set_cache_and_teardown` always sets the cache."
        )


def test_old_sqlite_llm_caching() -> None:
    llm_cache = get_llm_cache()
    if isinstance(llm_cache, SQLAlchemyCache):
        prompt = "How are you?"
        response = "Test response"
        cached_response = "Cached test response"
        llm = FakeListLLM(responses=[response])
        items = [
            llm_cache.cache_schema(
                prompt=prompt,
                llm=create_llm_string(llm),
                response=cached_response,
                idx=0,
            )
        ]
        with Session(llm_cache.engine) as session, session.begin():
            for item in items:
                session.merge(item)
        assert llm.invoke(prompt) == cached_response


async def test_chat_model_caching() -> None:
    prompt: List[BaseMessage] = [HumanMessage(content="How are you?")]
    response = "Test response"
    cached_response = "Cached test response"
    cached_message = AIMessage(content=cached_response)
    llm = FakeListChatModel(responses=[response])
    if llm_cache := get_llm_cache():
        # sync test
        llm_cache.update(
            prompt=dumps(prompt),
            llm_string=llm._get_llm_string(),
            return_val=[ChatGeneration(message=cached_message)],
        )
        result = llm.invoke(prompt)
        assert isinstance(result, AIMessage)
        assert result.content == cached_response

        # async test
        await llm_cache.aupdate(
            prompt=dumps(prompt),
            llm_string=llm._get_llm_string(),
            return_val=[ChatGeneration(message=cached_message)],
        )
        result = await llm.ainvoke(prompt)
        assert isinstance(result, AIMessage)
        assert result.content == cached_response
    else:
        raise ValueError(
            "The cache not set. This should never happen, as the pytest fixture "
            "`set_cache_and_teardown` always sets the cache."
        )


async def test_chat_model_caching_params() -> None:
    prompt: List[BaseMessage] = [HumanMessage(content="How are you?")]
    response = "Test response"
    cached_response = "Cached test response"
    cached_message = AIMessage(content=cached_response)
    llm = FakeListChatModel(responses=[response])
    if llm_cache := get_llm_cache():
        # sync test
        llm_cache.update(
            prompt=dumps(prompt),
            llm_string=llm._get_llm_string(functions=[]),
            return_val=[ChatGeneration(message=cached_message)],
        )
        result = llm.invoke(prompt, functions=[])
        result_no_params = llm.invoke(prompt)
        assert isinstance(result, AIMessage)
        assert result.content == cached_response
        assert isinstance(result_no_params, AIMessage)
        assert result_no_params.content == response

        # async test
        await llm_cache.aupdate(
            prompt=dumps(prompt),
            llm_string=llm._get_llm_string(functions=[]),
            return_val=[ChatGeneration(message=cached_message)],
        )
        result = await llm.ainvoke(prompt, functions=[])
        result_no_params = await llm.ainvoke(prompt)
        assert isinstance(result, AIMessage)
        assert result.content == cached_response
        assert isinstance(result_no_params, AIMessage)
        assert result_no_params.content == response
    else:
        raise ValueError(
            "The cache not set. This should never happen, as the pytest fixture "
            "`set_cache_and_teardown` always sets the cache."
        )


async def test_llm_cache_clear() -> None:
    prompt = "How are you?"
    expected_response = "Test response"
    cached_response = "Cached test response"
    llm = FakeListLLM(responses=[expected_response])
    if llm_cache := get_llm_cache():
        # sync test
        llm_cache.update(
            prompt=prompt,
            llm_string=create_llm_string(llm),
            return_val=[Generation(text=cached_response)],
        )
        llm_cache.clear()
        response = llm.invoke(prompt)
        assert response == expected_response

        # async test
        await llm_cache.aupdate(
            prompt=prompt,
            llm_string=create_llm_string(llm),
            return_val=[Generation(text=cached_response)],
        )
        await llm_cache.aclear()
        response = await llm.ainvoke(prompt)
        assert response == expected_response
    else:
        raise ValueError(
            "The cache not set. This should never happen, as the pytest fixture "
            "`set_cache_and_teardown` always sets the cache."
        )


def create_llm_string(llm: Union[BaseLLM, BaseChatModel]) -> str:
    _dict: Dict = llm.dict()
    _dict["stop"] = None
    return str(sorted([(k, v) for k, v in _dict.items()]))


def test_sql_alchemy_cache() -> None:
    """Test custom_caching behavior."""
    Base = declarative_base()

    class FulltextLLMCache(Base):  # type: ignore
        """Postgres table for fulltext-indexed LLM Cache."""

        __tablename__ = "llm_cache_fulltext"
        id = Column(Integer, Sequence("cache_id"), primary_key=True)
        prompt = Column(String, nullable=False)
        llm = Column(String, nullable=False)
        idx = Column(Integer)
        response = Column(String)

    engine = create_engine("sqlite://")

    from langchain_community.cache import SQLAlchemyCache

    set_llm_cache(SQLAlchemyCache(engine, FulltextLLMCache))
    llm = FakeLLM()
    params = llm.dict()
    params["stop"] = None
    llm_string = str(sorted([(k, v) for k, v in params.items()]))
    get_llm_cache().update("foo", llm_string, [Generation(text="fizz")])
    output = llm.generate(["foo", "bar", "foo"])
    expected_cache_output = [Generation(text="foo")]
    cache_output = get_llm_cache().lookup("bar", llm_string)
    assert cache_output == expected_cache_output
    set_llm_cache(None)
    expected_generations = [
        [Generation(text="fizz")],
        [Generation(text="foo")],
        [Generation(text="fizz")],
    ]
    expected_output = LLMResult(
        generations=expected_generations,
        llm_output=None,
    )
    assert output == expected_output