File size: 9,173 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
"""Wrapper around Together AI's Embeddings API."""

import logging
import os
import warnings
from typing import (
    Any,
    Dict,
    List,
    Literal,
    Mapping,
    Optional,
    Sequence,
    Set,
    Tuple,
    Union,
)

import openai
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import (
    BaseModel,
    Extra,
    Field,
    SecretStr,
    root_validator,
)
from langchain_core.utils import (
    convert_to_secret_str,
    get_from_dict_or_env,
    get_pydantic_field_names,
)

logger = logging.getLogger(__name__)


class TogetherEmbeddings(BaseModel, Embeddings):
    """TogetherEmbeddings embedding model.

    To use, set the environment variable `TOGETHER_API_KEY` with your API key or
    pass it as a named parameter to the constructor.

    Example:
        .. code-block:: python

            from langchain_together import TogetherEmbeddings

            model = TogetherEmbeddings()
    """

    client: Any = Field(default=None, exclude=True)  #: :meta private:
    async_client: Any = Field(default=None, exclude=True)  #: :meta private:
    model: str = "togethercomputer/m2-bert-80M-8k-retrieval"
    """Embeddings model name to use. 
    Instead, use 'togethercomputer/m2-bert-80M-8k-retrieval' for example.
    """
    dimensions: Optional[int] = None
    """The number of dimensions the resulting output embeddings should have.

    Not yet supported.
    """
    together_api_key: Optional[SecretStr] = Field(default=None, alias="api_key")
    """API Key for Solar API."""
    together_api_base: str = Field(
        default="https://api.together.ai/v1/", alias="base_url"
    )
    """Endpoint URL to use."""
    embedding_ctx_length: int = 4096
    """The maximum number of tokens to embed at once.

    Not yet supported.
    """
    allowed_special: Union[Literal["all"], Set[str]] = set()
    """Not yet supported."""
    disallowed_special: Union[Literal["all"], Set[str], Sequence[str]] = "all"
    """Not yet supported."""
    chunk_size: int = 1000
    """Maximum number of texts to embed in each batch.

    Not yet supported.
    """
    max_retries: int = 2
    """Maximum number of retries to make when generating."""
    request_timeout: Optional[Union[float, Tuple[float, float], Any]] = Field(
        default=None, alias="timeout"
    )
    """Timeout for requests to Together embedding API. Can be float, httpx.Timeout or
        None."""
    show_progress_bar: bool = False
    """Whether to show a progress bar when embedding.

    Not yet supported.
    """
    model_kwargs: Dict[str, Any] = Field(default_factory=dict)
    """Holds any model parameters valid for `create` call not explicitly specified."""
    skip_empty: bool = False
    """Whether to skip empty strings when embedding or raise an error.
    Defaults to not skipping.

    Not yet supported."""
    default_headers: Union[Mapping[str, str], None] = None
    default_query: Union[Mapping[str, object], None] = None
    # Configure a custom httpx client. See the
    # [httpx documentation](https://www.python-httpx.org/api/#client) for more details.
    http_client: Union[Any, None] = None
    """Optional httpx.Client. Only used for sync invocations. Must specify
        http_async_client as well if you'd like a custom client for async invocations.
    """
    http_async_client: Union[Any, None] = None
    """Optional httpx.AsyncClient. Only used for async invocations. Must specify
        http_client as well if you'd like a custom client for sync invocations."""

    class Config:
        extra = Extra.forbid
        allow_population_by_field_name = True

    @root_validator(pre=True)
    def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
        """Build extra kwargs from additional params that were passed in."""
        all_required_field_names = get_pydantic_field_names(cls)
        extra = values.get("model_kwargs", {})
        for field_name in list(values):
            if field_name in extra:
                raise ValueError(f"Found {field_name} supplied twice.")
            if field_name not in all_required_field_names:
                warnings.warn(
                    f"""WARNING! {field_name} is not default parameter.
                    {field_name} was transferred to model_kwargs.
                    Please confirm that {field_name} is what you intended."""
                )
                extra[field_name] = values.pop(field_name)

        invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
        if invalid_model_kwargs:
            raise ValueError(
                f"Parameters {invalid_model_kwargs} should be specified explicitly. "
                f"Instead they were passed in as part of `model_kwargs` parameter."
            )

        values["model_kwargs"] = extra
        return values

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that api key and python package exists in environment."""

        together_api_key = get_from_dict_or_env(
            values, "together_api_key", "TOGETHER_API_KEY"
        )
        values["together_api_key"] = (
            convert_to_secret_str(together_api_key) if together_api_key else None
        )
        values["together_api_base"] = values["together_api_base"] or os.getenv(
            "TOGETHER_API_BASE"
        )
        client_params = {
            "api_key": (
                values["together_api_key"].get_secret_value()
                if values["together_api_key"]
                else None
            ),
            "base_url": values["together_api_base"],
            "timeout": values["request_timeout"],
            "max_retries": values["max_retries"],
            "default_headers": values["default_headers"],
            "default_query": values["default_query"],
        }
        if not values.get("client"):
            sync_specific = (
                {"http_client": values["http_client"]} if values["http_client"] else {}
            )
            values["client"] = openai.OpenAI(
                **client_params, **sync_specific
            ).embeddings
        if not values.get("async_client"):
            async_specific = (
                {"http_client": values["http_async_client"]}
                if values["http_async_client"]
                else {}
            )
            values["async_client"] = openai.AsyncOpenAI(
                **client_params, **async_specific
            ).embeddings
        return values

    @property
    def _invocation_params(self) -> Dict[str, Any]:
        params: Dict = {"model": self.model, **self.model_kwargs}
        if self.dimensions is not None:
            params["dimensions"] = self.dimensions
        return params

    def embed_documents(self, texts: List[str]) -> List[List[float]]:
        """Embed a list of document texts using passage model.

        Args:
            texts: The list of texts to embed.

        Returns:
            List of embeddings, one for each text.
        """
        embeddings = []
        params = self._invocation_params
        params["model"] = params["model"]

        for text in texts:
            response = self.client.create(input=text, **params)

            if not isinstance(response, dict):
                response = response.model_dump()
                embeddings.extend([i["embedding"] for i in response["data"]])
        return embeddings

    def embed_query(self, text: str) -> List[float]:
        """Embed query text using query model.

        Args:
            text: The text to embed.

        Returns:
            Embedding for the text.
        """
        params = self._invocation_params
        params["model"] = params["model"]

        response = self.client.create(input=text, **params)

        if not isinstance(response, dict):
            response = response.model_dump()
        return response["data"][0]["embedding"]

    async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
        """Embed a list of document texts using passage model asynchronously.

        Args:
            texts: The list of texts to embed.

        Returns:
            List of embeddings, one for each text.
        """
        embeddings = []
        params = self._invocation_params
        params["model"] = params["model"]

        for text in texts:
            response = await self.async_client.create(input=text, **params)

            if not isinstance(response, dict):
                response = response.model_dump()
                embeddings.extend([i["embedding"] for i in response["data"]])
        return embeddings

    async def aembed_query(self, text: str) -> List[float]:
        """Asynchronous Embed query text using query model.

        Args:
            text: The text to embed.

        Returns:
            Embedding for the text.
        """
        params = self._invocation_params
        params["model"] = params["model"]

        response = await self.async_client.create(input=text, **params)

        if not isinstance(response, dict):
            response = response.model_dump()
        return response["data"][0]["embedding"]