File size: 1,842 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from langchain_community.chat_models import ChatOpenAI
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables import RunnableParallel, RunnablePassthrough

# Example for document loading (from url), splitting, and creating vectostore

""" 
# Load
from langchain_community.document_loaders import WebBaseLoader
loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
data = loader.load()

# Split
from langchain_text_splitters import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
all_splits = text_splitter.split_documents(data)

# Add to vectorDB
vectorstore = Chroma.from_documents(documents=all_splits, 
                                    collection_name="rag-chroma",
                                    embedding=OpenAIEmbeddings(),
                                    )
retriever = vectorstore.as_retriever()
"""

# Embed a single document as a test
vectorstore = Chroma.from_texts(
    ["harrison worked at kensho"],
    collection_name="rag-chroma",
    embedding=OpenAIEmbeddings(),
)
retriever = vectorstore.as_retriever()

# RAG prompt
template = """Answer the question based only on the following context:
{context}

Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)

# LLM
model = ChatOpenAI()

# RAG chain
chain = (
    RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
    | prompt
    | model
    | StrOutputParser()
)


# Add typing for input
class Question(BaseModel):
    __root__: str


chain = chain.with_types(input_type=Question)