File size: 17,162 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
from __future__ import annotations

import json
from pathlib import Path
from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Union

import yaml

from langchain_experimental.data_anonymizer.base import (
    DEFAULT_DEANONYMIZER_MATCHING_STRATEGY,
    AnonymizerBase,
    ReversibleAnonymizerBase,
)
from langchain_experimental.data_anonymizer.deanonymizer_mapping import (
    DeanonymizerMapping,
    MappingDataType,
    create_anonymizer_mapping,
)
from langchain_experimental.data_anonymizer.deanonymizer_matching_strategies import (
    exact_matching_strategy,
)
from langchain_experimental.data_anonymizer.faker_presidio_mapping import (
    get_pseudoanonymizer_mapping,
)

if TYPE_CHECKING:
    from presidio_analyzer import AnalyzerEngine, EntityRecognizer
    from presidio_analyzer.nlp_engine import NlpEngineProvider
    from presidio_anonymizer import AnonymizerEngine
    from presidio_anonymizer.entities import ConflictResolutionStrategy, OperatorConfig


def _import_analyzer_engine() -> "AnalyzerEngine":
    try:
        from presidio_analyzer import AnalyzerEngine

    except ImportError as e:
        raise ImportError(
            "Could not import presidio_analyzer, please install with "
            "`pip install presidio-analyzer`. You will also need to download a "
            "spaCy model to use the analyzer, e.g. "
            "`python -m spacy download en_core_web_lg`."
        ) from e
    return AnalyzerEngine


def _import_nlp_engine_provider() -> "NlpEngineProvider":
    try:
        from presidio_analyzer.nlp_engine import NlpEngineProvider

    except ImportError as e:
        raise ImportError(
            "Could not import presidio_analyzer, please install with "
            "`pip install presidio-analyzer`. You will also need to download a "
            "spaCy model to use the analyzer, e.g. "
            "`python -m spacy download en_core_web_lg`."
        ) from e
    return NlpEngineProvider


def _import_anonymizer_engine() -> "AnonymizerEngine":
    try:
        from presidio_anonymizer import AnonymizerEngine
    except ImportError as e:
        raise ImportError(
            "Could not import presidio_anonymizer, please install with "
            "`pip install presidio-anonymizer`."
        ) from e
    return AnonymizerEngine


def _import_operator_config() -> "OperatorConfig":
    try:
        from presidio_anonymizer.entities import OperatorConfig
    except ImportError as e:
        raise ImportError(
            "Could not import presidio_anonymizer, please install with "
            "`pip install presidio-anonymizer`."
        ) from e
    return OperatorConfig


# Configuring Anonymizer for multiple languages
# Detailed description and examples can be found here:
# langchain/docs/extras/guides/privacy/multi_language_anonymization.ipynb
DEFAULT_LANGUAGES_CONFIG = {
    # You can also use Stanza or transformers library.
    # See https://microsoft.github.io/presidio/analyzer/customizing_nlp_models/
    "nlp_engine_name": "spacy",
    "models": [
        {"lang_code": "en", "model_name": "en_core_web_lg"},
        # {"lang_code": "de", "model_name": "de_core_news_md"},
        # {"lang_code": "es", "model_name": "es_core_news_md"},
        # ...
        # List of available models: https://spacy.io/usage/models
    ],
}


class PresidioAnonymizerBase(AnonymizerBase):
    """Base Anonymizer using Microsoft Presidio.

    See more: https://microsoft.github.io/presidio/
    """

    def __init__(
        self,
        analyzed_fields: Optional[List[str]] = None,
        operators: Optional[Dict[str, OperatorConfig]] = None,
        languages_config: Optional[Dict] = None,
        add_default_faker_operators: bool = True,
        faker_seed: Optional[int] = None,
    ):
        """
        Args:
            analyzed_fields: List of fields to detect and then anonymize.
                Defaults to all entities supported by Microsoft Presidio.
            operators: Operators to use for anonymization.
                Operators allow for custom anonymization of detected PII.
                Learn more:
                https://microsoft.github.io/presidio/tutorial/10_simple_anonymization/
            languages_config: Configuration for the NLP engine.
                First language in the list will be used as the main language
                in self.anonymize(...) when no language is specified.
                Learn more:
                https://microsoft.github.io/presidio/analyzer/customizing_nlp_models/
            faker_seed: Seed used to initialize faker.
                Defaults to None, in which case faker will be seeded randomly
                and provide random values.
        """
        if languages_config is None:
            languages_config = DEFAULT_LANGUAGES_CONFIG
        OperatorConfig = _import_operator_config()
        AnalyzerEngine = _import_analyzer_engine()
        NlpEngineProvider = _import_nlp_engine_provider()
        AnonymizerEngine = _import_anonymizer_engine()

        self.analyzed_fields = (
            analyzed_fields
            if analyzed_fields is not None
            else list(get_pseudoanonymizer_mapping().keys())
        )

        if add_default_faker_operators:
            self.operators = {
                field: OperatorConfig(
                    operator_name="custom", params={"lambda": faker_function}
                )
                for field, faker_function in get_pseudoanonymizer_mapping(
                    faker_seed
                ).items()
            }
        else:
            self.operators = {}

        if operators:
            self.add_operators(operators)

        provider = NlpEngineProvider(nlp_configuration=languages_config)
        nlp_engine = provider.create_engine()

        self.supported_languages = list(nlp_engine.nlp.keys())

        self._analyzer = AnalyzerEngine(
            supported_languages=self.supported_languages, nlp_engine=nlp_engine
        )
        self._anonymizer = AnonymizerEngine()

    def add_recognizer(self, recognizer: EntityRecognizer) -> None:
        """Add a recognizer to the analyzer

        Args:
            recognizer: Recognizer to add to the analyzer.
        """
        self._analyzer.registry.add_recognizer(recognizer)
        self.analyzed_fields.extend(recognizer.supported_entities)

    def add_operators(self, operators: Dict[str, OperatorConfig]) -> None:
        """Add operators to the anonymizer

        Args:
            operators: Operators to add to the anonymizer.
        """
        self.operators.update(operators)


class PresidioAnonymizer(PresidioAnonymizerBase):
    """Anonymizer using Microsoft Presidio."""

    def _anonymize(
        self,
        text: str,
        language: Optional[str] = None,
        allow_list: Optional[List[str]] = None,
        conflict_resolution: Optional[ConflictResolutionStrategy] = None,
    ) -> str:
        """Anonymize text.
        Each PII entity is replaced with a fake value.
        Each time fake values will be different, as they are generated randomly.

        PresidioAnonymizer has no built-in memory -
        so it will not remember the effects of anonymizing previous texts.
        >>> anonymizer = PresidioAnonymizer()
        >>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
        'My name is Noah Rhodes. Hi Noah Rhodes!'
        >>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
        'My name is Brett Russell. Hi Brett Russell!'

        Args:
            text: text to anonymize
            language: language to use for analysis of PII
                If None, the first (main) language in the list
                of languages specified in the configuration will be used.
        """
        if language is None:
            language = self.supported_languages[0]
        elif language not in self.supported_languages:
            raise ValueError(
                f"Language '{language}' is not supported. "
                f"Supported languages are: {self.supported_languages}. "
                "Change your language configuration file to add more languages."
            )

        # Check supported entities for given language
        # e.g. IT_FISCAL_CODE is not supported for English in Presidio by default
        # If you want to use it, you need to add a recognizer manually
        supported_entities = []
        for recognizer in self._analyzer.get_recognizers(language):
            recognizer_dict = recognizer.to_dict()
            supported_entities.extend(
                [recognizer_dict["supported_entity"]]
                if "supported_entity" in recognizer_dict
                else recognizer_dict["supported_entities"]
            )

        entities_to_analyze = list(
            set(supported_entities).intersection(set(self.analyzed_fields))
        )

        analyzer_results = self._analyzer.analyze(
            text,
            entities=entities_to_analyze,
            language=language,
            allow_list=allow_list,
        )

        filtered_analyzer_results = (
            self._anonymizer._remove_conflicts_and_get_text_manipulation_data(
                analyzer_results, conflict_resolution
            )
        )

        anonymizer_results = self._anonymizer.anonymize(
            text,
            analyzer_results=analyzer_results,
            operators=self.operators,
        )

        anonymizer_mapping = create_anonymizer_mapping(
            text,
            filtered_analyzer_results,
            anonymizer_results,
        )
        return exact_matching_strategy(text, anonymizer_mapping)


class PresidioReversibleAnonymizer(PresidioAnonymizerBase, ReversibleAnonymizerBase):
    """Reversible Anonymizer using Microsoft Presidio."""

    def __init__(
        self,
        analyzed_fields: Optional[List[str]] = None,
        operators: Optional[Dict[str, OperatorConfig]] = None,
        languages_config: Optional[Dict] = None,
        add_default_faker_operators: bool = True,
        faker_seed: Optional[int] = None,
    ):
        if languages_config is None:
            languages_config = DEFAULT_LANGUAGES_CONFIG
        super().__init__(
            analyzed_fields,
            operators,
            languages_config,
            add_default_faker_operators,
            faker_seed,
        )
        self._deanonymizer_mapping = DeanonymizerMapping()

    @property
    def deanonymizer_mapping(self) -> MappingDataType:
        """Return the deanonymizer mapping"""
        return self._deanonymizer_mapping.data

    @property
    def anonymizer_mapping(self) -> MappingDataType:
        """Return the anonymizer mapping
        This is just the reverse version of the deanonymizer mapping."""
        return {
            key: {v: k for k, v in inner_dict.items()}
            for key, inner_dict in self.deanonymizer_mapping.items()
        }

    def _anonymize(
        self,
        text: str,
        language: Optional[str] = None,
        allow_list: Optional[List[str]] = None,
        conflict_resolution: Optional[ConflictResolutionStrategy] = None,
    ) -> str:
        """Anonymize text.
        Each PII entity is replaced with a fake value.
        Each time fake values will be different, as they are generated randomly.
        At the same time, we will create a mapping from each anonymized entity
        back to its original text value.

        Thanks to the built-in memory, all previously anonymised entities
        will be remembered and replaced by the same fake values:
        >>> anonymizer = PresidioReversibleAnonymizer()
        >>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
        'My name is Noah Rhodes. Hi Noah Rhodes!'
        >>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
        'My name is Noah Rhodes. Hi Noah Rhodes!'

        Args:
            text: text to anonymize
            language: language to use for analysis of PII
                If None, the first (main) language in the list
                of languages specified in the configuration will be used.
        """
        if language is None:
            language = self.supported_languages[0]

        if language not in self.supported_languages:
            raise ValueError(
                f"Language '{language}' is not supported. "
                f"Supported languages are: {self.supported_languages}. "
                "Change your language configuration file to add more languages."
            )

        # Check supported entities for given language
        # e.g. IT_FISCAL_CODE is not supported for English in Presidio by default
        # If you want to use it, you need to add a recognizer manually
        supported_entities = []
        for recognizer in self._analyzer.get_recognizers(language):
            recognizer_dict = recognizer.to_dict()
            supported_entities.extend(
                [recognizer_dict["supported_entity"]]
                if "supported_entity" in recognizer_dict
                else recognizer_dict["supported_entities"]
            )

        entities_to_analyze = list(
            set(supported_entities).intersection(set(self.analyzed_fields))
        )

        analyzer_results = self._analyzer.analyze(
            text,
            entities=entities_to_analyze,
            language=language,
            allow_list=allow_list,
        )

        filtered_analyzer_results = (
            self._anonymizer._remove_conflicts_and_get_text_manipulation_data(
                analyzer_results, conflict_resolution
            )
        )

        anonymizer_results = self._anonymizer.anonymize(
            text,
            analyzer_results=analyzer_results,
            operators=self.operators,
        )

        new_deanonymizer_mapping = create_anonymizer_mapping(
            text,
            filtered_analyzer_results,
            anonymizer_results,
            is_reversed=True,
        )
        self._deanonymizer_mapping.update(new_deanonymizer_mapping)

        return exact_matching_strategy(text, self.anonymizer_mapping)

    def _deanonymize(
        self,
        text_to_deanonymize: str,
        deanonymizer_matching_strategy: Callable[
            [str, MappingDataType], str
        ] = DEFAULT_DEANONYMIZER_MATCHING_STRATEGY,
    ) -> str:
        """Deanonymize text.
        Each anonymized entity is replaced with its original value.
        This method exploits the mapping created during the anonymization process.

        Args:
            text_to_deanonymize: text to deanonymize
            deanonymizer_matching_strategy: function to use to match
                anonymized entities with their original values and replace them.
        """
        if not self._deanonymizer_mapping:
            raise ValueError(
                "Deanonymizer mapping is empty.",
                "Please call anonymize() and anonymize some text first.",
            )

        text_to_deanonymize = deanonymizer_matching_strategy(
            text_to_deanonymize, self.deanonymizer_mapping
        )

        return text_to_deanonymize

    def reset_deanonymizer_mapping(self) -> None:
        """Reset the deanonymizer mapping"""
        self._deanonymizer_mapping = DeanonymizerMapping()

    def save_deanonymizer_mapping(self, file_path: Union[Path, str]) -> None:
        """Save the deanonymizer mapping to a JSON or YAML file.

        Args:
            file_path: Path to file to save the mapping to.

        Example:
        .. code-block:: python

            anonymizer.save_deanonymizer_mapping(file_path="path/mapping.json")
        """

        save_path = Path(file_path)

        if save_path.suffix not in [".json", ".yaml"]:
            raise ValueError(f"{save_path} must have an extension of .json or .yaml")

        # Make sure parent directories exist
        save_path.parent.mkdir(parents=True, exist_ok=True)

        if save_path.suffix == ".json":
            with open(save_path, "w") as f:
                json.dump(self.deanonymizer_mapping, f, indent=2)
        elif save_path.suffix.endswith((".yaml", ".yml")):
            with open(save_path, "w") as f:
                yaml.dump(self.deanonymizer_mapping, f, default_flow_style=False)

    def load_deanonymizer_mapping(self, file_path: Union[Path, str]) -> None:
        """Load the deanonymizer mapping from a JSON or YAML file.

        Args:
            file_path: Path to file to load the mapping from.

        Example:
        .. code-block:: python

            anonymizer.load_deanonymizer_mapping(file_path="path/mapping.json")
        """

        load_path = Path(file_path)

        if load_path.suffix not in [".json", ".yaml"]:
            raise ValueError(f"{load_path} must have an extension of .json or .yaml")

        if load_path.suffix == ".json":
            with open(load_path, "r") as f:
                loaded_mapping = json.load(f)
        elif load_path.suffix.endswith((".yaml", ".yml")):
            with open(load_path, "r") as f:
                loaded_mapping = yaml.load(f, Loader=yaml.FullLoader)

        self._deanonymizer_mapping.update(loaded_mapping)