Spaces:
Runtime error
Runtime error
File size: 6,554 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
"""Wrapper around Konko AI's Completion API."""
import logging
import warnings
from typing import Any, Dict, List, Optional
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.llms import LLM
from langchain_core.pydantic_v1 import Extra, SecretStr, root_validator
from langchain_community.utils.openai import is_openai_v1
logger = logging.getLogger(__name__)
class Konko(LLM):
"""Konko AI models.
To use, you'll need an API key. This can be passed in as init param
``konko_api_key`` or set as environment variable ``KONKO_API_KEY``.
Konko AI API reference: https://docs.konko.ai/reference/
"""
base_url: str = "https://api.konko.ai/v1/completions"
"""Base inference API URL."""
konko_api_key: SecretStr
"""Konko AI API key."""
model: str
"""Model name. Available models listed here:
https://docs.konko.ai/reference/get_models
"""
temperature: Optional[float] = None
"""Model temperature."""
top_p: Optional[float] = None
"""Used to dynamically adjust the number of choices for each predicted token based
on the cumulative probabilities. A value of 1 will always yield the same
output. A temperature less than 1 favors more correctness and is appropriate
for question answering or summarization. A value greater than 1 introduces more
randomness in the output.
"""
top_k: Optional[int] = None
"""Used to limit the number of choices for the next predicted word or token. It
specifies the maximum number of tokens to consider at each step, based on their
probability of occurrence. This technique helps to speed up the generation
process and can improve the quality of the generated text by focusing on the
most likely options.
"""
max_tokens: Optional[int] = None
"""The maximum number of tokens to generate."""
repetition_penalty: Optional[float] = None
"""A number that controls the diversity of generated text by reducing the
likelihood of repeated sequences. Higher values decrease repetition.
"""
logprobs: Optional[int] = None
"""An integer that specifies how many top token log probabilities are included in
the response for each token generation step.
"""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator(pre=True)
def validate_environment(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Validate that python package exists in environment."""
try:
import konko
except ImportError:
raise ImportError(
"Could not import konko python package. "
"Please install it with `pip install konko`."
)
if not hasattr(konko, "_is_legacy_openai"):
warnings.warn(
"You are using an older version of the 'konko' package. "
"Please consider upgrading to access new features"
"including the completion endpoint."
)
return values
def construct_payload(
self,
prompt: str,
stop: Optional[List[str]] = None,
**kwargs: Any,
) -> Dict[str, Any]:
stop_to_use = stop[0] if stop and len(stop) == 1 else stop
payload: Dict[str, Any] = {
**self.default_params,
"prompt": prompt,
"stop": stop_to_use,
**kwargs,
}
return {k: v for k, v in payload.items() if v is not None}
@property
def _llm_type(self) -> str:
"""Return type of model."""
return "konko"
@staticmethod
def get_user_agent() -> str:
from langchain_community import __version__
return f"langchain/{__version__}"
@property
def default_params(self) -> Dict[str, Any]:
return {
"model": self.model,
"temperature": self.temperature,
"top_p": self.top_p,
"top_k": self.top_k,
"max_tokens": self.max_tokens,
"repetition_penalty": self.repetition_penalty,
}
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to Konko's text generation endpoint.
Args:
prompt: The prompt to pass into the model.
Returns:
The string generated by the model..
"""
import konko
payload = self.construct_payload(prompt, stop, **kwargs)
try:
if is_openai_v1():
response = konko.completions.create(**payload)
else:
response = konko.Completion.create(**payload)
except AttributeError:
raise ValueError(
"`konko` has no `Completion` attribute, this is likely "
"due to an old version of the konko package. Try upgrading it "
"with `pip install --upgrade konko`."
)
if is_openai_v1():
output = response.choices[0].text
else:
output = response["choices"][0]["text"]
return output
async def _acall(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Asynchronously call out to Konko's text generation endpoint.
Args:
prompt: The prompt to pass into the model.
Returns:
The string generated by the model.
"""
import konko
payload = self.construct_payload(prompt, stop, **kwargs)
try:
if is_openai_v1():
client = konko.AsyncKonko()
response = await client.completions.create(**payload)
else:
response = await konko.Completion.acreate(**payload)
except AttributeError:
raise ValueError(
"`konko` has no `Completion` attribute, this is likely "
"due to an old version of the konko package. Try upgrading it "
"with `pip install --upgrade konko`."
)
if is_openai_v1():
output = response.choices[0].text
else:
output = response["choices"][0]["text"]
return output
|