File size: 8,860 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from __future__ import annotations

from typing import Any, Dict, Iterator, List, Optional

from langchain_core._api.deprecation import deprecated
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models import LanguageModelInput
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
from langchain_core.pydantic_v1 import BaseModel, SecretStr, root_validator
from langchain_core.utils import get_from_dict_or_env

from langchain_community.llms import BaseLLM
from langchain_community.utilities.vertexai import create_retry_decorator


def completion_with_retry(
    llm: GooglePalm,
    prompt: LanguageModelInput,
    is_gemini: bool = False,
    stream: bool = False,
    run_manager: Optional[CallbackManagerForLLMRun] = None,
    **kwargs: Any,
) -> Any:
    """Use tenacity to retry the completion call."""
    retry_decorator = create_retry_decorator(
        llm, max_retries=llm.max_retries, run_manager=run_manager
    )

    @retry_decorator
    def _completion_with_retry(
        prompt: LanguageModelInput, is_gemini: bool, stream: bool, **kwargs: Any
    ) -> Any:
        generation_config = kwargs.get("generation_config", {})
        if is_gemini:
            return llm.client.generate_content(
                contents=prompt, stream=stream, generation_config=generation_config
            )
        return llm.client.generate_text(prompt=prompt, **kwargs)

    return _completion_with_retry(
        prompt=prompt, is_gemini=is_gemini, stream=stream, **kwargs
    )


def _is_gemini_model(model_name: str) -> bool:
    return "gemini" in model_name


def _strip_erroneous_leading_spaces(text: str) -> str:
    """Strip erroneous leading spaces from text.

    The PaLM API will sometimes erroneously return a single leading space in all
    lines > 1. This function strips that space.
    """
    has_leading_space = all(not line or line[0] == " " for line in text.split("\n")[1:])
    if has_leading_space:
        return text.replace("\n ", "\n")
    else:
        return text


@deprecated("0.0.12", alternative_import="langchain_google_genai.GoogleGenerativeAI")
class GooglePalm(BaseLLM, BaseModel):
    """
    DEPRECATED: Use `langchain_google_genai.GoogleGenerativeAI` instead.

    Google PaLM models.
    """

    client: Any  #: :meta private:
    google_api_key: Optional[SecretStr]
    model_name: str = "models/text-bison-001"
    """Model name to use."""
    temperature: float = 0.7
    """Run inference with this temperature. Must by in the closed interval
       [0.0, 1.0]."""
    top_p: Optional[float] = None
    """Decode using nucleus sampling: consider the smallest set of tokens whose
       probability sum is at least top_p. Must be in the closed interval [0.0, 1.0]."""
    top_k: Optional[int] = None
    """Decode using top-k sampling: consider the set of top_k most probable tokens.
       Must be positive."""
    max_output_tokens: Optional[int] = None
    """Maximum number of tokens to include in a candidate. Must be greater than zero.
       If unset, will default to 64."""
    n: int = 1
    """Number of chat completions to generate for each prompt. Note that the API may
       not return the full n completions if duplicates are generated."""
    max_retries: int = 6
    """The maximum number of retries to make when generating."""

    @property
    def is_gemini(self) -> bool:
        """Returns whether a model is belongs to a Gemini family or not."""
        return _is_gemini_model(self.model_name)

    @property
    def lc_secrets(self) -> Dict[str, str]:
        return {"google_api_key": "GOOGLE_API_KEY"}

    @classmethod
    def is_lc_serializable(self) -> bool:
        return True

    @classmethod
    def get_lc_namespace(cls) -> List[str]:
        """Get the namespace of the langchain object."""
        return ["langchain", "llms", "google_palm"]

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate api key, python package exists."""
        google_api_key = get_from_dict_or_env(
            values, "google_api_key", "GOOGLE_API_KEY"
        )
        model_name = values["model_name"]
        try:
            import google.generativeai as genai

            if isinstance(google_api_key, SecretStr):
                google_api_key = google_api_key.get_secret_value()

            genai.configure(api_key=google_api_key)

            if _is_gemini_model(model_name):
                values["client"] = genai.GenerativeModel(model_name=model_name)
            else:
                values["client"] = genai
        except ImportError:
            raise ImportError(
                "Could not import google-generativeai python package. "
                "Please install it with `pip install google-generativeai`."
            )

        if values["temperature"] is not None and not 0 <= values["temperature"] <= 1:
            raise ValueError("temperature must be in the range [0.0, 1.0]")

        if values["top_p"] is not None and not 0 <= values["top_p"] <= 1:
            raise ValueError("top_p must be in the range [0.0, 1.0]")

        if values["top_k"] is not None and values["top_k"] <= 0:
            raise ValueError("top_k must be positive")

        if values["max_output_tokens"] is not None and values["max_output_tokens"] <= 0:
            raise ValueError("max_output_tokens must be greater than zero")

        return values

    def _generate(
        self,
        prompts: List[str],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> LLMResult:
        generations: List[List[Generation]] = []
        generation_config = {
            "stop_sequences": stop,
            "temperature": self.temperature,
            "top_p": self.top_p,
            "top_k": self.top_k,
            "max_output_tokens": self.max_output_tokens,
            "candidate_count": self.n,
        }
        for prompt in prompts:
            if self.is_gemini:
                res = completion_with_retry(
                    self,
                    prompt=prompt,
                    stream=False,
                    is_gemini=True,
                    run_manager=run_manager,
                    generation_config=generation_config,
                )
                candidates = [
                    "".join([p.text for p in c.content.parts]) for c in res.candidates
                ]
                generations.append([Generation(text=c) for c in candidates])
            else:
                res = completion_with_retry(
                    self,
                    model=self.model_name,
                    prompt=prompt,
                    stream=False,
                    is_gemini=False,
                    run_manager=run_manager,
                    **generation_config,
                )
                prompt_generations = []
                for candidate in res.candidates:
                    raw_text = candidate["output"]
                    stripped_text = _strip_erroneous_leading_spaces(raw_text)
                    prompt_generations.append(Generation(text=stripped_text))
                generations.append(prompt_generations)

        return LLMResult(generations=generations)

    def _stream(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> Iterator[GenerationChunk]:
        generation_config = kwargs.get("generation_config", {})
        if stop:
            generation_config["stop_sequences"] = stop
        for stream_resp in completion_with_retry(
            self,
            prompt,
            stream=True,
            is_gemini=True,
            run_manager=run_manager,
            generation_config=generation_config,
            **kwargs,
        ):
            chunk = GenerationChunk(text=stream_resp.text)
            yield chunk
            if run_manager:
                run_manager.on_llm_new_token(
                    stream_resp.text,
                    chunk=chunk,
                    verbose=self.verbose,
                )

    @property
    def _llm_type(self) -> str:
        """Return type of llm."""
        return "google_palm"

    def get_num_tokens(self, text: str) -> int:
        """Get the number of tokens present in the text.

        Useful for checking if an input will fit in a model's context window.

        Args:
            text: The string input to tokenize.

        Returns:
            The integer number of tokens in the text.
        """
        if self.is_gemini:
            raise ValueError("Counting tokens is not yet supported!")
        result = self.client.count_text_tokens(model=self.model_name, prompt=text)
        return result["token_count"]