Spaces:
Runtime error
Runtime error
File size: 5,211 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
# This file is adapted from
# https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/embeddings/huggingface.py
from typing import Any, Dict, List, Optional
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra, Field
DEFAULT_BGE_MODEL = "BAAI/bge-small-en-v1.5"
DEFAULT_QUERY_BGE_INSTRUCTION_EN = (
"Represent this question for searching relevant passages: "
)
DEFAULT_QUERY_BGE_INSTRUCTION_ZH = "为这个句子生成表示以用于检索相关文章:"
class IpexLLMBgeEmbeddings(BaseModel, Embeddings):
"""Wrapper around the BGE embedding model
with IPEX-LLM optimizations on Intel CPUs and GPUs.
To use, you should have the ``ipex-llm``
and ``sentence_transformers`` package installed. Refer to
`here <https://python.langchain.com/v0.1/docs/integrations/text_embedding/ipex_llm/>`_
for installation on Intel CPU.
Example on Intel CPU:
.. code-block:: python
from langchain_community.embeddings import IpexLLMBgeEmbeddings
embedding_model = IpexLLMBgeEmbeddings(
model_name="BAAI/bge-large-en-v1.5",
model_kwargs={},
encode_kwargs={"normalize_embeddings": True},
)
Refer to
`here <https://python.langchain.com/v0.1/docs/integrations/text_embedding/ipex_llm_gpu/>`_
for installation on Intel GPU.
Example on Intel GPU:
.. code-block:: python
from langchain_community.embeddings import IpexLLMBgeEmbeddings
embedding_model = IpexLLMBgeEmbeddings(
model_name="BAAI/bge-large-en-v1.5",
model_kwargs={"device": "xpu"},
encode_kwargs={"normalize_embeddings": True},
)
"""
client: Any #: :meta private:
model_name: str = DEFAULT_BGE_MODEL
"""Model name to use."""
cache_folder: Optional[str] = None
"""Path to store models.
Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass to the model."""
encode_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass when calling the `encode` method of the model."""
query_instruction: str = DEFAULT_QUERY_BGE_INSTRUCTION_EN
"""Instruction to use for embedding query."""
embed_instruction: str = ""
"""Instruction to use for embedding document."""
def __init__(self, **kwargs: Any):
"""Initialize the sentence_transformer."""
super().__init__(**kwargs)
try:
import sentence_transformers
from ipex_llm.transformers.convert import _optimize_post, _optimize_pre
except ImportError as exc:
base_url = (
"https://python.langchain.com/v0.1/docs/integrations/text_embedding/"
)
raise ImportError(
"Could not import ipex_llm or sentence_transformers. "
f"Please refer to {base_url}/ipex_llm/ "
"for install required packages on Intel CPU. "
f"And refer to {base_url}/ipex_llm_gpu/ "
"for install required packages on Intel GPU. "
) from exc
# Set "cpu" as default device
if "device" not in self.model_kwargs:
self.model_kwargs["device"] = "cpu"
if self.model_kwargs["device"] not in ["cpu", "xpu"]:
raise ValueError(
"IpexLLMBgeEmbeddings currently only supports device to be "
f"'cpu' or 'xpu', but you have: {self.model_kwargs['device']}."
)
self.client = sentence_transformers.SentenceTransformer(
self.model_name, cache_folder=self.cache_folder, **self.model_kwargs
)
# Add ipex-llm optimizations
self.client = _optimize_pre(self.client)
self.client = _optimize_post(self.client)
if self.model_kwargs["device"] == "xpu":
self.client = self.client.half().to("xpu")
if "-zh" in self.model_name:
self.query_instruction = DEFAULT_QUERY_BGE_INSTRUCTION_ZH
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace transformer model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
texts = [self.embed_instruction + t.replace("\n", " ") for t in texts]
embeddings = self.client.encode(texts, **self.encode_kwargs)
return embeddings.tolist()
def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace transformer model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
text = text.replace("\n", " ")
embedding = self.client.encode(
self.query_instruction + text, **self.encode_kwargs
)
return embedding.tolist()
|